1. Theratio of the mass of certainvolume of gasto the mass of anequal volume ofhydrogenunder thesameconditions oftemperature andpressure.
2. Aformula of a chemical substance which tells the actual number of atoms in one moleculeofasubstance.
3. Aformulawhichshowsthesimplestwholenumber ratio
4.DEFINE:GayLussac'slaw ofgaseousvolumes
4. Calculate the volume of propane burnt for every 200 cm 3 of oxygenused in the reaction.

$$
\mathrm{C} 3 \mathrm{H} 8+5 \mathrm{O} 2 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}
$$

6. The number of atoms present in one molecule of an element is called its :
(a) Molecular number
(b) Atomic number
(c) Avogadro's number
(d) Atomicity
7. The vapour density of carbon dioxide $[C=12,0=16]$ is:
(a) 12
(b) 16
(c) 44
(d) 22
8. The empirical formula of hexane is :
(a) $\mathrm{C}_{2} \mathrm{H}_{7}$
(b) $\mathrm{C}_{5} \mathrm{H}_{8}$
(c) $\mathrm{C}_{3} \mathrm{H}_{7}$
(d) $\mathrm{C}_{4} \mathrm{H}_{7}$
9. If empirical formula of an organic compound is $\mathrm{CH}_{2} \mathrm{O}$ then its molecular formula can be :
(a) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$
(b) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
(c) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
(d) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
10. DEFINE limiting reageant
11. Find the total percentage of Magnesium in magnesium nitrate crystals, $\mathrm{Mg}(\mathrm{NO} 3) 2.6 \mathrm{H} 2 \mathrm{O} .[\mathrm{Mg}=24, \mathrm{~N}$
= 14; $\mathrm{O}=16$ and $\mathrm{H}=1$]
12. (i) Determine the empirical formula of the compound whose composition by mass is :
42% nitrogen, 48% oxygen and 9% hydrogen. $[\mathrm{H}=1 ; \mathrm{N}=14 ; \mathrm{O}=16]$
(ii) Determine the empirical formula of a compound containing 47.9% potassium, 5.5% beryllium and 46.6% fluorine by mass.
(Atomic weight of $\mathrm{Be}=9 ; \mathrm{F}=19 ; \mathrm{K}=39$) Work to one decimal place.
2.Calculate the Empirical formula of the compound having 37.6% of sodium, 23.1% of silicon and 39.3% of oxygen. $[0=16, \mathrm{~N}=23, \mathrm{Si}=28]$
(ii) The Empirical formula of a compound is C 2 H 5 . It has a vapour density of 29. Determine the relative molecular formula mass of the compound and hence its molecular formula.
3.Calculate the atomicity of oxygen molecule from the following information :

Vapour density of oxygen = 16
Relative atomic mass of oxygen $=16$
Show all the calculations
4. 67.2 litres of hydrogen combines with 44.8 litres of nitrogen of form ammonia under specific conditions as:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \text { 2 } 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Calculate the volume of ammonia produced. What is the other substance, if any, thatremains in the resultant mixture?
5.An organic compound with vapour density $=94$ contains.
$\mathrm{C}=12.67 \%, \mathrm{H}=2.13 \%$, and $\mathrm{Br}=85.11 \%$. Find the molecular formula.[Atomic mass : $\mathrm{C}=12, \mathrm{H}=1$, $\mathrm{Br}=80$]
6.(i) Calculate the percentage of platinum in ammonium chloroplatinate (NH4)2PtCl6 (Give your answer correct to the nearest whole number).
(ii) The percentage composition of sodium phosphate as determined by analysis, is 42.1% sodium, 18.9% phosphorus and 39% oxygen. Find the empirical formula of the compound (work to two decimal places).
$(\mathrm{H}=1, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Na}=23, \mathrm{P}=31, \mathrm{Cl}=35.5, \mathrm{Pt}=195)$
7.A compound contains 87.5% by mass of nitrogen and 12.5% by mass of hydrogen. Determine the empirical formula of this compound.
8.A compound X consists of 4.8% carbon and 95.2% bromine by mass.
(i) Determine the empirical formula of this compound working correct to one decimal place ($\mathrm{C}=12 ; \mathrm{Br}=80$).
(ii) If the vapour density of the compound is 252 , what is the molecular formula of the compound?
9.A gaseous organic compound contains 3.6 g of carbon and 0.8 g of hydrogen. The vapour density of this compound is 22 .
(i) Calculate the Empirical formula.
(ii) Calculate the molecular formula of the compound.
(iii) If 4.4 g of the above compound are completely burnt in oxygen, calculate the volume of carbon dioxide formed at S.T.P. [$\mathrm{C}=12 ; \mathrm{H}=1 ; \mathrm{O}=16$]

