1. In triangle $\mathrm{PQR}, \mathrm{PQ}=24 \mathrm{~cm}, \mathrm{QR}=7 \mathrm{~cm}$ and $\angle P Q R=90^{\circ}$. Find the radius of the inscribed circle.
2. In the given figure, $A P$ and $A Q$ are tangents to the circle with centre $0 . B C$ is tangent at point R on it.

If $\mathrm{OA}=17 \mathrm{~cm}$ and radius of the circle $=8 \mathrm{~cm}$, find the perimeter of the triangle ABC .

3. A, B and C are three points on a circle. The tangent at c meets BA produced at T. Given that $\angle A T C=36^{\circ}$ and that $\angle A C T=48^{\circ}$, calculate the angle subtended by $A B$ at the centre of the circle.

4. P and Q are centres of circles with radii 9 cm and 2 cm respectively. $P Q=17 \mathrm{~cm} . R$ is the centre of a circle of radius $x \mathrm{~cm}$, which touches the above circles externally. Given that $\angle P R Q=90^{\circ}$, write an equation in x and solve it.
5. Two circles with radii 25 cm and 9 cm touch each other externally. Find the length of the direct common tangent.
6. The centres of two circles with radii 6 cm and 2 cm are 10 cm apart. Calculate the length of the transverse common tangent.
7. In the figure, given alongside, $\mathrm{PQ}=\mathrm{QR}, \angle \mathrm{RQP}=68^{\circ}, \mathrm{PC}$ and QC are tangents to the circle with centre O. Calculate the values of (i) $\angle Q O P$ (ii) $\angle Q C P$.

8. From each of the following figures, find the value of x.
i. $P A=4 \mathrm{~cm}, \mathrm{~PB}=6 \mathrm{~cm}, \mathrm{PC}=5 \mathrm{~cm}$ and $\mathrm{PD}=\mathrm{xcm}$.

ii. $\quad P A=2 P B=12 \mathrm{~cm}, P C=P D=x \mathrm{~cm}$

iii. $\quad A B=10 \mathrm{~cm}, P B=6 \mathrm{~cm}, C D=x \mathrm{~cm}$ and $P D=4 \mathrm{~cm}$

iv. $\quad \mathrm{PA}=20 \mathrm{~cm}, \mathrm{~PB}=16 \mathrm{~cm}$ and $\mathrm{BC}=\mathrm{xcm}$.

9. In the given figure, AB is the diameter and AC is the chord of a circle such that $\angle \mathrm{BAC}=30^{\circ}$. The tangent at C intersects $A B$ produced at D. Prove that : $B C=B D$.

10. In the given figure, PT touches a circle with centre 0 at R. Diameter $S Q$ when produced meets PT at P. If $\angle S P R=x^{\circ}$ and $\angle Q R P=y^{\circ}$, show that $x^{\circ}+2 y^{\circ}=90^{\circ}$.

11. In the given figure, PM is a tangent to the circle and $\mathrm{PA}=\mathrm{AM}$. Prove that :
i. $\triangle P M B$ is isosceles
ii. $\quad P A \times P B=M B^{2}$

12. Two circles touch each other internally at point P. $Q P R$ is the tangent at P; segments $P A B$ and PCD meet circles at points A, B, C and D as shown in the figure.

Show that chord AC is parallel to chord BD.

13. In a right triangle $A B C$, a circle with $A B$ as diameter is drawn to intersect the hypotenuse $A C$ in P. Prove that the tangent at P, bisects the side $B C$.
14. $A B C$ is an isosceles triangle with $A B=A C$. A circle through B touches side $A C$ at its middle point D and intersects side $A B$ in point P. Show that : $A B=4 \times A P$.
15. The given figure shows an isosceles triangle $A B C$ inscribed in a circle such that $A B=A C$. If DAE is a tangent to the circle at point A, prove that $D E$ is parallel to $B C$.

16. $A B$ is the diameter of a circle with centre O. A line $P Q$ touches the given circle at point R and cuts the tangents to the circle through A and B at points P and Q respectively. Prove that : $\angle P O Q=90^{\circ}$.

