1. Line segment joining the mid point of any side with the opposite vertex is
(a) altitude
(b) median
c) perpendicular bisector
(d) angle bisector
2. The length of perpendicular drawn from the opposite vertex to any side is
(a) altitude
(b) median
c) perpendicular bisector
(d) angle bisector
3. The point of intersection of all the altitudes of a triangle is
(a) orthocentre
(b) incentre
c) circumcentre
(d) centroid
4. The point of intersection of the perpendicular bisector of all sides of a triangle is
(a) orthocentre
(b) incentre
c) circumcentre
(d) centroid
5. In a triangle, the angle opposite to the longest side is:
(a) greater than 60°
(b) measure of 50°
(c) greater than 90°
(d) none of these
6. The point of intersection of all the medians of a triangle is
(a) orthocentre
(b) incentre
c) circumcentre
(d) centroid
7. In a triangle $A B C$, if $2 \angle A=3 \angle B=6 \angle C$, then the measure of $\angle A$ is
(a) 30°
(b) 75^{0}
c) 90°
(d) 60°
8. In a triangle $A B C$, if $2 \angle A=3 \angle B=6 \angle C$, then the measure of $\angle B$ is
(a) 30°
(b) 75^{0}
c) 90°
(d) 60°
9. In a triangle ABC , if $2 \angle \mathrm{~A}=3 \angle \mathrm{~B}=6 \angle \mathrm{C}$, then the measure of $\angle \mathrm{C}$ is
(a) 30°
(b) 75°
c) 90°
(d) 60°
10. In a triangle ABC , if $\angle \mathrm{A}-\angle \mathrm{B}=33^{\circ}$ and $\angle \mathrm{B}-\angle \mathrm{C}=18^{0}$, then the measure of $\angle \mathrm{A}$ is
(a) 88^{0}
(b) 55°
c) 37^{0}
(d) 60°
11. In a triangle ABC , if $\angle \mathrm{A}-\angle \mathrm{B}=33^{\circ}$ and $\angle \mathrm{B}-\angle \mathrm{C}=18^{\circ}$, then the measure of $\angle \mathrm{B}$ is
(a) 88^{0}
(b) 55^{0}
c) 37^{0}
(d) 60°
12. In a triangle ABC , if $\angle \mathrm{A}-\angle \mathrm{B}=33^{\circ}$ and $\angle \mathrm{B}-\angle \mathrm{C}=18^{0}$, then the measure of $\angle \mathrm{C}$ is
(a) 88^{0}
(b) 55^{0}
c) 37^{0}
(d) 60°
13. In a triangle ABC , if $\angle \mathrm{A}+\angle \mathrm{B}=65^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{C}=140^{\circ}$, then the measure of $\angle \mathrm{A}$ is
(a) 40°
(b) 25^{0}
c) 115^{0}
(d) 60°
14. In a triangle ABC , if $\angle \mathrm{A}+\angle \mathrm{B}=65^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{C}=140^{\circ}$, then the measure of $\angle \mathrm{B}$ is
(a) 40°
(b) 25^{0}
c) 115^{0}
(d) 60°
15. In a triangle ABC , if $\angle \mathrm{A}+\angle \mathrm{B}=65^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{C}=140^{\circ}$, then the measure of $\angle \mathrm{C}$ is
(a) 40°
(b) 25^{0}
c) 115^{0}
(d) 60^{0}
16. In quadrilateral $\mathrm{ABCD}, \mathrm{AC}=\mathrm{AD}$ and AB bisect $\angle \mathrm{A}$ and $\triangle \mathrm{ABC}$ $\cong \triangle \mathrm{ABD}$. The relation between BC and BD is
(a) $\mathrm{BC}>\mathrm{BD}$
(b) $\mathrm{BC}<\mathrm{BD}$
(c) $\mathrm{BC}=\mathrm{BD}$
(d) $\mathrm{BC}=(1 / 2) \mathrm{BD}$
17. In quadrilateral $\mathrm{ABCD}, \mathrm{AD}=\mathrm{BC}$ and $\angle \mathrm{DAB}=\angle \mathrm{CBA}$. If $\triangle A B D \cong \triangle B A C$. The relation between $\angle A B D$ and $\angle B A C$ is
(a) $\angle \mathrm{ABD}>\angle \mathrm{BAC}$
(b) $\angle \mathrm{ABD}<\angle \mathrm{BAC}$
(c) $\angle \mathrm{ABD}=\angle \mathrm{BAC}$
(d) $\angle \mathrm{ABD}=(1 / 2) \angle \mathrm{BAC}$
18. $\triangle \mathrm{ABC}$ is right triangle in which $\angle \mathrm{A}=90^{\circ}$ and $\mathrm{AB}=\mathrm{AC}$. The values of $\angle \mathrm{B}$ and $\angle \mathrm{D}$ will be
(a) $\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
(b) $\angle \mathrm{B}=\angle \mathrm{C}=30^{\circ}$
(c) $\angle \mathrm{B}=\angle \mathrm{C}=45^{\circ}$
(d) $\angle \mathrm{B}=\angle \mathrm{C}=50^{\circ}$
19. The measure of each angle of an equilateral triangle is:

(a) 60°
(b) 30°
c) 45^{0}
(d) 40°
20. If the vertical angle of a isosceles triangle is 400 then measure of other two angles will be
(a) $60^{\circ}, 60^{\circ}$
(b) $70^{\circ}, 70^{\circ}$
(c) $50^{\circ}, 50^{\circ}$
(d) $75^{\circ}, 75^{\circ}$
21. If $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ of $\triangle \mathrm{ABC}$ are equal then triangle is:
(a) Equilateral
(b) Isosceles
(c) Scalene
(d) none of these.
22. $A C$ and $B D$ are equal perpendicular to line segment $A B$. If
 $\triangle \mathrm{BOC} \cong \triangle \mathrm{AOD}$, then the relation between $O C$ and $O D$ is
(a) $\mathrm{OD}>\mathrm{OC}$
(b) $\mathrm{OD}<\mathrm{OC}$
(c) $\mathrm{OD}=\mathrm{OC}$
(d) $\mathrm{OD}=(1 / 2) \mathrm{OC}$
23. If M is the midpoint of hypotenuse Ac of right triangle ABC then $\mathrm{BM}=\frac{1}{2}$ \qquad
(a) AC
(b) BC
(c) AB
(d) none of these
24. In fig. $A B=A C$ and $B F=C D$. If $\triangle A C D \cong \triangle A B E$ then $\mathrm{AD}=$
(a) AC
(b) AE
(c) AB
(d) none of these

MATHEMATICS
CLASS- 9TH

1. In a triangle, the angle opposite to the longer side is:
(a) larger
(b) 90°
(c) smaller
(d) none of these
2. In a triangle side opposite to larger angle is
(a) longer
(b) shorter
(c) equal
(d) none of these
3. In a triangle, the sum of its two sides is \qquad third side.
(a) equal to
(b) less than
(c) greater than
(d) none of these
4. The point of intersection of the angle bisector of all internal angles of a triangle is
(a) orthocentre
(b) incentre
c) circumcentre
(d) centroid
5. In fig, $P Q R$ is a triangle in which T is a point on $Q R$ and if S is a point such that $R T=S T$: then $P Q+P R$ \qquad QS
(a) $\mathrm{PQ}+\mathrm{PR}>\mathrm{QS}$
(b) $\mathrm{PQ}+\mathrm{PR}<\mathrm{QS}$
(c) $\mathrm{PQ}+\mathrm{PR}=\mathrm{QS}$
(d) $P Q+P R=\frac{1}{2} Q S$
6. The sum of three altitudes of triangle is \qquad the sum of its three sides.
(a) equal to
(b) less than
(c) greater than
(d) none of these
7. In a right angled triangle, \qquad is the longest side.

(a) perpendicular
(b) hypotenuse
(c) base
(d) none of these
8. In fig, $\angle \mathrm{B}<\angle \mathrm{A}$ and $\angle \mathrm{C}<\angle \mathrm{D}$ then relation between AD and BC is
(a) $\mathrm{AD}>\mathrm{BC}$
(b) $\mathrm{AD}<\mathrm{BC}$
(c) $\mathrm{AD}=\mathrm{BC}$
(d) none of these
9. In a triangle $\mathrm{ABC}, \angle \mathrm{A}=\angle \mathrm{B}=62 \frac{1}{2}^{\circ}$ then the longest side is
(a) AC
(b) BC
(c) AB
(d) none of these
10. How many equilateral triangles each of 1 cm and fill the given hexagonal rangoli?
(a) 200
(b) 300
(c) 150
(d) 250

11. How many equilateral triangles each of 1 cm and fill the given star rangoli?
(a) 200
(b) 300
(c) 150
(d) 350
12. In a triangle $\mathrm{ABC}, \mathrm{AC}>\mathrm{AB}$ and bisector of $\angle \mathrm{A}$ meets BC at D then $\angle \mathrm{ADB}$ is:
(a) acute angle
(b) right angle
(c) obtuse angle
(d) linear angle
13. The difference between any two sides of a triangle is \qquad the third side.
(a) equal to
(b) less than
(c) greater than
(d) half

14. If two angles of a triangle are unequal then the side opposite side to the smaller angle is:
(a) greater
(b) 90°
(c) smaller
(d) none of these
15. The sides opposite to two equal angles of a triangle are:
(a) not equal
(b) congruent
(c) may be congruent
(d) not congruent
16. Which one of the following is the value of congruency?
(a) SAS
(b) ASS
(c) SSA
(d) none of these
17. By which congruence rule following triangles are congruent ?
(a) SAS
(b) ASS
(c) AAS
(d) SSS

18. In a right triangle, if acute angle is double of other angle then hypotenuse is:
(a) equal to the smallest side
(b) three times the smallest side
(c) twice the smallest side
(d) smaller than any of the two sides
19. In a triangle ABC , if median $\mathrm{BE}=$ median CF then triangle is:
(a) Equilateral
(b) Isosceles
(c) Scalene
(d) none of these.
20. The perimeter of a triangle is \qquad the sum of its medians.
(a) equal to
(b) less than
(c) greater than
(d) half of
21. If one angle of a triangle is equal to the sum of other two angles, then the triangle is
(a) an Equilateral triangle
(b) an Isosceles triangle
(c) an obtuse triangle
(d) a right triangle .
22. In the given figure, the ratio $\angle \mathrm{ABD}: \angle \mathrm{ACD}$ is
(a) $1: 1$
(b) $2: 1$
(c) $1: 2$
(d) $2: 3$

23. $\angle \mathrm{x}$ and $\angle \mathrm{y}$ are exterior angles of a $\triangle \mathrm{ABC}$, at the points B and C respectively. Also $\angle \mathrm{B}>\angle \mathrm{C}$, then relation between $\angle \mathrm{x}$ and $\angle \mathrm{y}$ is
(a) $\angle x>\angle y$
(b) $\angle \mathrm{x}<\angle \mathrm{y}$
(c) $\angle x=\angle y$
(d) none of these
24. In the given figure, $\mathrm{PQ}>\mathrm{PR}, \mathrm{QS}$ and RS are the bisectors of $\angle \mathrm{Q}$ and $\angle \mathrm{R}$ respectively, then
(a) $S Q>S R$
(b) $\mathrm{SQ}<\mathrm{SR}$
(c) $S Q=S R$
(d) none of these

25. If the bisector of vertical angle of a triangle is perpendicular to the base of triangle is
(a) an Equilateral triangle
(b) a scalene triangle
(c) an obtuse angled triangle
(d) an acute angled triangle .
26. In a $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, three equality relations between same parts are as follows:
$\mathrm{AB}=\mathrm{QP}, \angle \mathrm{B}=\angle \mathrm{P}$ and $\mathrm{BC}=\mathrm{PR}$
State which of the congruence conditions applies:
(a) SAS
(b) ASA
(c) SSS
(d) RHS
27. D, E, F are the midpoints of the sides $B C, C A$ and $A B$ respectively of $\triangle A B C$, then $\triangle D E F$ is congruent to triangle
(a) ABC
(b) AEF
(c) BFD, CDE
(d) AFE, BFD, CDE
28. In quadrilateral $\mathrm{ABCD}, \mathrm{BM}$ and DN are drawn perpendicular to AC such that $\mathrm{BM}=\mathrm{DN}$. If $\mathrm{BR}=8 \mathrm{~cm}$, then BD is
(a) 4 cm
(b) 2 cm
(c) 12 cm
(d) 16 cm
29. If $\triangle A B C \cong \triangle P Q R$ and $\triangle A B C$ is not congruent to $\triangle R P Q$, then which of the following is not true:
(a) $B C=P Q$
(b) $\mathrm{AC}=\mathrm{PR}$
(c) $\mathrm{QR}=\mathrm{BC}$
(d) $\mathrm{AB}=\mathrm{PQ}$
30. D is a point on the side $B C$ of a $\angle A B C$ such that $A D$ bisects $\triangle B A C$. Then
(a) $\mathrm{BD}=\mathrm{CD}$
(b) $\mathrm{BA}>\mathrm{BD}$
(c) $\mathrm{BD}>\mathrm{BA}$
(d) $\mathrm{CD}>\mathrm{CA}$
