PERL EDUCATION

MCQ WORKSHEET-I TRIANGLES

MATHEMATICS

CLASS-9TH

- Line segment joining the mid point of any side with the opposite vertex is

 (a) altitude
 (b) median
 (c) perpendicular bisector
 (d) angle bisector
- 2. The length of perpendicular drawn from the opposite vertex to any side is(a) altitude(b) median(c) perpendicular bisector(d) angle bisector
- **3.** The point of intersection of all the altitudes of a triangle is (a) orthocentre (b) incentre c) circumcentre (d) centroid
- **4.** The point of intersection of the perpendicular bisector of all sides of a triangle is (a) orthocentre (b) incentre c) circumcentre (d) centroid
- 5. In a triangle, the angle opposite to the longest side is: (a) greater than 60^{0} (b) measure of 50^{0} (c) greater than 90^{0} (d) none of these
- 6. The point of intersection of all the medians of a triangle is (a) orthocentre (b) incentre c) circumcentre (d) centroid
- 7. In a triangle ABC, if $2\angle A = 3\angle B = 6\angle C$, then the measure of $\angle A$ is (a) 30^{0} (b) 75^{0} c) 90^{0} (d) 60^{0}
- 8. In a triangle ABC, if $2\angle A = 3\angle B = 6\angle C$, then the measure of $\angle B$ is (a) 30^{0} (b) 75^{0} c) 90^{0} (d) 60^{0}
- 9. In a triangle ABC, if $2\angle A = 3\angle B = 6\angle C$, then the measure of $\angle C$ is (a) 30^{0} (b) 75^{0} c) 90^{0} (d) 60^{0}
- **10.** In a triangle ABC, if $\angle A \angle B = 33^{\circ}$ and $\angle B \angle C = 18^{\circ}$, then the measure of $\angle A$ is (a) 88° (b) 55° c) 37° (d) 60°
- **11.** In a triangle ABC, if $\angle A \angle B = 33^{\circ}$ and $\angle B \angle C = 18^{\circ}$, then the measure of $\angle B$ is (a) 88° (b) 55° c) 37° (d) 60°
- **12.** In a triangle ABC, if $\angle A \angle B = 33^{\circ}$ and $\angle B \angle C = 18^{\circ}$, then the measure of $\angle C$ is (a) 88° (b) 55° c) 37° (d) 60°
- **13.** In a triangle ABC, if $\angle A + \angle B = 65^{\circ}$ and $\angle B + \angle C = 140^{\circ}$, then the measure of $\angle A$ is (a) 40° (b) 25° c) 115° (d) 60°
- **14.** In a triangle ABC, if $\angle A + \angle B = 65^{\circ}$ and $\angle B + \angle C = 140^{\circ}$, then the measure of $\angle B$ is (a) 40° (b) 25° c) 115° (d) 60°
- **15.** In a triangle ABC, if $\angle A + \angle B = 65^{\circ}$ and $\angle B + \angle C = 140^{\circ}$, then the measure of $\angle C$ is (a) 40° (b) 25° c) 115° (d) 60°

MCQ WORKSHEET-II TRIANGLES

Ε

D

1. In quadrilateral ABCD, AC = AD and AB bisect $\angle A$ and $\triangle ABC$ $\cong \Delta ABD$. The relation between BC and BD is (a) BC > BD(b) BC < BDВ (c) BC = BD(d) BC = (1/2)BD 2. In quadrilateral ABCD, AD = BC and $\angle DAB = \angle CBA$. If $\triangle ABD \cong \triangle BAC$. The relation between $\angle ABD$ and $\angle BAC$ is D (a) $\angle ABD > \angle BAC$ (b) $\angle ABD < \angle BAC$ Α (c) $\angle ABD = \angle BAC$ (d) $\angle ABD = (1/2) \angle BAC$ **3.** $\triangle ABC$ is right triangle in which $\angle A = 90^{\circ}$ and AB = AC. The values of $\angle B$ and $\angle D$ will be (a) $\angle B = \angle C = 60^{\circ}$ (b) $\angle B = \angle C = 30^{\circ}$ (c) $\angle B = \angle C = 45^{\circ}$ (d) $\angle B = \angle C = 50^{\circ}$ В 5. The measure of each angle of an equilateral triangle is: (a) 60° (b) 30° c) 45° (d) 40° В 6. If the vertical angle of a isosceles triangle is 400 then measure of other two angles will be (a) 60° , 60° (c) 50° , 50° (b) 70° , 70° (d) 75° , 75° 0 7. If $\angle A$, $\angle B$ and $\angle C$ of $\triangle ABC$ are equal then triangle is: (a) Equilateral (b) Isosceles (c) Scalene (d) none of these. 8. AC and BD are equal perpendicular to line segment AB. If $\triangle BOC \cong \triangle AOD$, then the relation between OC and OD is (b) OD < OC(a) OD > OC(c) OD = OC(d) OD = (1/2)OC9. If M is the midpoint of hypotenuse Ac of right triangle ABC then BM =(a) AC (b) BC (c) AB (d) none of these **10.** In fig. AB = AC and BF = CD. If $\triangle ACD \cong \triangle ABE$ then AD =(a) AC (b) AE(c) AB (d) none of these

PERL EDUCATION

MCQ WORKSHEET-III TRIANGLES

MATHEMATICS

CLASS-9TH

MCQ WORKSHEET-IV TRIANGLES

MATHEMATICS

CLASS-9TH

- 8. In a right triangle, if acute angle is double of other angle then hypotenuse is:
 (a) equal to the smallest side
 (b) three times the smallest side
 (c) twice the smallest side
 (d) smaller than any of the two sides
- 9. In a triangle ABC, if median BE = median CF then triangle is:
 (a) Equilateral
 (b) Isosceles
 (c) Scalene
 (d) none of these.
- **10.** The perimeter of a triangle is _____ the sum of its medians.(a) equal to(b) less than(c) greater than(d) half of

MCQ WORKSHEET-V TRIANGLES

MATHEMATICS

CLASS-9TH

- 1. If one angle of a triangle is equal to the sum of other two angles, then the triangle is
 - (a) an Equilateral triangle (b) an Isosceles triangle
 - (c) an obtuse triangle (d) a right triangle .
- 2. In the given figure, the ratio $\angle ABD : \angle ACD$ is (a) 1 : 1 (b) 2 : 1 (c) 1 : 2 (d) 2 : 3

- 3. ∠x and ∠y are exterior angles of a ∆ABC, at the points B and C respectively. Also ∠B > ∠C, then relation between ∠x and ∠y is
 (a) ∠x > ∠y
 (b) ∠x < ∠y
 (c) ∠x = ∠y
 (d) none of these
- 4. In the given figure, PQ > PR, QS and RS are the bisectors of $\angle Q$ and $\angle R$ respectively, then (a) SQ > SR (b) SQ < SR (c) SQ = SR (d) none of these

- 5. If the bisector of vertical angle of a triangle is perpendicular to the base of triangle is (a) an Equilateral triangle (b) a scalene triangle (c) an obtuse angled triangle (d) an acute angled triangle .
- 6. In a ΔABC and ΔPQR, three equality relations between same parts are as follows: AB = QP, ∠B = ∠P and BC = PR State which of the congruence conditions applies:
 (a) SAS (b) ASA (c) SSS (d) RHS
- 7. D, E, F are the midpoints of the sides BC, CA and AB respectively of ΔABC, then ΔDEF is congruent to triangle
 (a) ABC
 (b) AEF
 - (a) ABC (b) AEF (c) BFD, CDE (d) AFE, BFD, CDE

8. In quadrilateral ABCD, BM and DN are drawn perpendicular to AC such that BM = DN. If BR = 8 cm, then BD is

- 9. If $\triangle ABC \cong \triangle PQR$ and $\triangle ABC$ is not congruent to $\triangle RPQ$, then which of the following is not true: (a) BC = PQ (b) AC = PR (c) QR = BC (d) AB = PQ
- **10.** D is a point on the side BC of a $\angle ABC$ such that AD bisects $\triangle BAC$. Then (a) BD = CD (b) BA > BD (c) BD > BA (d) CD > CA