

MCQ WORKSHEET-I

MATHEMATICS CLASS-9TH

1. Parallelograms on the same base and between the same parallels are _____ in area.

(a) half

(b) one third (c) one fourth (d) equal

2. If a triangle and a parallelogram are on the same base and between the same parallels, then prove that the area of the triangle is _____ of the area of the parallelogram.

(b) one third (c) one fourth (d) equal

3. In the below Fig., ABCD is a parallelogram, AE \perp DC and CF \perp AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.

(a) 10.8

(b) 11.8

(c) 12.8

(d) 13.8

4. In the above Fig., ABCD is a parallelogram, AE \perp DC and CF \perp AD. If AD = 9 cm, CF = 4 cm and DC = 12 cm, find AE.

(a) 3 cm

(b) 6 cm

(c) 9 cm

(d) 2 cm

5. In the above Fig., ABCD is a parallelogram, AE \perp DC and CF \perp AD. If AD = 5 cm, CF = 8 cm and AE = 4 cm, find AB.

(a) 10 cm

(b) 20 cm

(c) 9 cm

(d) 12 cm

6. If E,F,G and H are respectively the mid-points of the sides of a parallelogram ABCD, then ar (EFGH) =

(a) ar(ABCD) (b) $\frac{1}{2}$ ar(ABCD) (c) $\frac{1}{3}$ ar(ABCD) (d) $\frac{1}{4}$ ar(ABCD)

7. In the below Fig., ABCD is a parallelogram and EFCD is a rectangle, then ar (EFGH) =

(a) $\operatorname{ar}(ABCD)$ (b) $\frac{1}{2}\operatorname{ar}(ABCD)$ (c) $\frac{1}{3}\operatorname{ar}(ABCD)$ (d) $\frac{1}{4}\operatorname{ar}(ABCD)$

8. Two triangles on the same base (or equal bases) and between the same parallels are _____ in area.

(a) half

(b) one third (c) one fourth (d) equal

9.	A median of a	a triangle divides	it into two	triangles of	areas.
----	---------------	--------------------	-------------	--------------	--------

- (a) half
- (b) one third (c) one fourth (d) equal
- **10.** Area of a triangle is _____ the product of its base and the corresponding altitude.
 - (a) half
- (b) one third (c) one fourth (d) equal
- ____ the product of its base and the corresponding altitude. **11.** Area of a parallelogram is ___
- (b) one third (c) one fourth (d) equal
- 12. The area of a rhombus, the lengths of whose diagonals are 16 cm and 24 cm respectively, is
 - (a) 192 cm^2

- (b) 120 cm^2 (c) 384 cm^2 (d) none of these
- 13. The area of a trapezium whose parallel sides are 9 cm and 6 cm and the distance between these sides is 8 cm is
 - (a) 92 cm^2
- (b) 120 cm^2 (c) 60 cm^2
- (d) none of these
- **14.** The area of a below quadrilateral is (a) 112 cm^2 (b) 120 cm^2 (c)
- (b) 120 cm^2 (c) 114 cm^2
- (d) none of these

- **15.** The area of a below quadrilateral is
- (a) 150 cm^2 (b) 180 cm^2 (c) 100 cm^2
- (d) none of these

MCQ WORKSHEET-II

MATHEMATICS CLASS-9TH

- 1. D, E and F are respectively the mid-points of the sides BC, CA and AB of a \triangle ABC, then
- (a) $\operatorname{ar}(ABC)$ (b) $\frac{1}{2}\operatorname{ar}(ABC)$ (c) $\frac{1}{3}\operatorname{ar}(ABC)$ (d) $\frac{1}{4}\operatorname{ar}(ABC)$
- 2. D, E and F are respectively the mid-points of the sides BC, CA and AB of a \triangle ABC, then ar (BDEF)

 - (a) $\operatorname{ar}(ABC)$ (b) $\frac{1}{2}\operatorname{ar}(ABC)$ (c) $\frac{1}{3}\operatorname{ar}(ABC)$ (d) $\frac{1}{4}\operatorname{ar}(ABC)$
- 3. In a triangle ABC, E is the mid-point of median AD, then ar (BED) =

- (a) $\operatorname{ar}(ABC)$ (b) $\frac{1}{2}\operatorname{ar}(ABC)$ (c) $\frac{1}{3}\operatorname{ar}(ABC)$ (d) $\frac{1}{4}\operatorname{ar}(ABC)$
- **4.** In \triangle ABC, E is any point on median AD then ar (ABE) =

- (a) $\operatorname{ar}(ACE)$ (b) $\frac{1}{2}\operatorname{ar}(ACE)$ (c) $\frac{1}{3}\operatorname{ar}(ACE)$ (d) $\frac{1}{4}\operatorname{ar}(ACE)$
- 5. ABC and ABD are two triangles on the same base AB. If line- segment CD is bisected by AB at O then ar(ABC) =

- (a) $\operatorname{ar}(ABD)$ (b) $\frac{1}{2}\operatorname{ar}(ABD)$ (c) $\frac{1}{3}\operatorname{ar}(ABD)$ (d) $\frac{1}{4}\operatorname{ar}(ABD)$

B

- 6. In Fig. ABCD is a quadrilateral and BE || AC and also BE meets DC produced at E then the area of \triangle ADE is _____ to the area of the quadrilateral ABCD.
 - (a) half
- (b) one third (c) one fourth
- (d) equal

- 7. In the above sided Fig, P is a point in the interior of a parallelogram ABCD then ar (APB) + ar (PCD) =
- (a) ar(ABCD) (b) $\frac{1}{2}$ ar(ABCD) (c) $\frac{1}{3}$ ar(ABCD) (d) $\frac{1}{4}$ ar(ABCD)
- **8.** In Fig. PQRS and ABRS are parallelograms and X is any point on side BR then ar (AX S) =

- (a) ar(PQRS) (b) $\frac{1}{2}ar(PQRS)$ (c) $\frac{1}{3}ar(PQRS)$ (d) $\frac{1}{4}ar(PQRS)$
- 9. In Fig, PQRS and ABRS are parallelograms and X is any point on side BR then ar (ABRS) =

- (a) $\operatorname{ar}(PQRS)$ (b) $\frac{1}{2}\operatorname{ar}(PQRS)$ (c) $\frac{1}{3}\operatorname{ar}(PQRS)$ (d) $\frac{1}{4}\operatorname{ar}(PQRS)$

- 10. P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD then ar (APB) =

 - (a) $\operatorname{ar}(BQC)$ (b) $\frac{1}{2}\operatorname{ar}(BQC)$ (c) $\frac{1}{3}\operatorname{ar}(BQC)$ (d) $\frac{1}{4}\operatorname{ar}(BQC)$
- 11. In the below figure, ABCD is trapezium in which AB || DC and its diagonals AC and BD intersect at O then ar(AOD) =
- (a) $\operatorname{ar}(\operatorname{BOC})$ (b) $\frac{1}{2}\operatorname{ar}(\operatorname{BOC})$ (c) $\frac{1}{3}\operatorname{ar}(\operatorname{BOC})$ (d) $\frac{1}{4}\operatorname{ar}(\operatorname{BOC})$

- 12. In the adjoining figure, ABCD is a quadrilateral in which diagonal BC = 14 cm. If AL \perp BD and $CM \perp BD$ such that AL = 8cm and CM = 6 cm, then the area of quadrilateral is
 - (a) 90 cm^2
- (b) 95 cm^2
- (c) 98 cm^2
- (d) none of these

MCQ WORKSHEET-III AREAS OF || 2ms AND TRIANGLES

MATHEMATICS CLASS-9TH

- 1. Given figure A and figure B such that area(A) = 20 sq. units and area(B) = 20 sq. units. The
 - (a) figure A and B are congruent

- (b) figure A and B are all not congruent.
- (c) figure A and B may or may not be congruent
- (d) none of these.
- 2. Out of the given figures, mark which are not on the same base but between same parallels

(d) none of these

- 3. In the given figure, BD = DE = EC. Mark the correct option
 - (a) $ar(\Delta ABD) = ar(\Delta AEC)$
 - (b) $ar(\Delta DBA) = ar(\Delta ADC)$
 - (c) $ar(\Delta ADE) = \frac{1}{3}ar(\Delta ABC)$
 - (d) $ar(\Delta ABE) = \frac{2}{3}ar(\Delta ABC)$

- 4. ABCDE is a pentagon. A line through B line parallel to AC meet DC produced at F.
 - (a) $ar(\Delta ACB) = ar(\Delta AEC)$
 - (b) $ar(\Delta ABF) = ar(\Delta CABF)$
 - (c) $ar(\Delta ACF) = ar(\Delta CBF)$
 - (d) $ar(\Delta ABF) = ar(\Delta ABC)$
- **5.** In the below figure, ABCD is a parallelogram, then $ar(\Delta AFB)$ is
 - (a) 16 cm^2
- (b) 8 cm²
- (c) 4 cm^2
- (d) 2 cm^2

6. In the given figure, ABCD and ABFE are parallelograms and ar(quad. EABC) = 17 cm^2 , ar(\parallel^{gm} ABCD) = 25 cm^2 then $ar(\Delta BCF)$ is

(a) 4 cm^2

(b) 8 cm²

(c) 4.8 cm^2

(d) 6 cm²

7. Given $ar(\Delta ABC) = 32cm^2$, AD is median of ΔABC , and BE is median of ΔABD . IF BO is median of $\triangle ABE$, the ar($\triangle BOE$) is

(a) 16 cm^2

(b) 4 cm^2

(c) 2 cm^2

(d) 1 cm^2

8. In the given figure, find x, if ABCD is a rhombus and AC = 4cm, $ar(ABCD) = 20cm^2$.

(a) 4 cm

(b) 5 cm

(d) 2.5 cm

9. In the given figure, find the area of rhombus ABCD if AO = 4 cm and OD = 5 cm.

A. 40 cm²

- B. 80 cm²
- $C. 20 \text{ cm}^2$
- D. 10 cm^2
- 10. The area of rhombus is 120 cm² and one of its diagonals is 12 cm then the other diagonal is

A. 5 cm

B. 10 cm

C. 20 cm

D. 12 cm

11. Given in triangle ABC, BE is the median of \triangle ABC and $ar(\triangle$ ABE) = 20 cm², then $ar(\triangle$ ABC) =

A. 40 cm^2

B. 80 cm²

 $C. 20 \text{ cm}^2$

D. 10 cm^2

12. In the adjoining figure, ABCD is a trapezium in which AB \parallel DC; AB = 7 cm; AD = BC = 5 cm and the distance between the parallel lines is 4 cm, then length DC =

- A. 15 cm
- B. 13 cm
- C. 11 cm
- D. 12 cm
- 13. In the above figure, ABCD is a trapezium in which AB \parallel DC; AB = 7 cm; AD = BC = 5 cm and the distance between the parallel lines is 4 cm, then the area of trap.ABCD =
 - $A. 40 \text{ cm}^2$
- B. 80 cm²
- $C. 20 cm^2$
- $D. 10 cm^2$
- **14.** In the below figure, ABCD is a parallelogram; DC = 5 cm; BD = 7 cm, then the area of parallelogram ABCD is
 - A. 45 cm^2
- B. 35 cm^2
- $C. 25 cm^2$
- $D. 10 cm^2$

- 15. In the above figure, ABCD is a parallelogram; AB = 10 cm; BM = 8 cm and DC = 6 cm, then
 - A. 15 cm
- B. 13 cm
- C. 11 cm
- D. none of these