1. Parallelograms on the same base and between the same parallels are $\qquad$ in area.
(a) half
(b) one third
(c) one fourth
(d) equal
2. If a triangle and a parallelogram are on the same base and between the same parallels, then prove that the area of the triangle is $\qquad$ of the area of the parallelogram.
(a) half
(b) one third
(c) one fourth
(d) equal
3. In the below Fig., ABCD is a parallelogram, $\mathrm{AE} \perp \mathrm{DC}$ and $\mathrm{CF} \perp \mathrm{AD}$. If $\mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{CF}=10 \mathrm{~cm}$, find AD .
(a) 10.8
(b) 11.8
(c) 12.8
(d) 13.8

4. In the above Fig., ABCD is a parallelogram, $\mathrm{AE} \perp \mathrm{DC}$ and $\mathrm{CF} \perp \mathrm{AD}$. If $\mathrm{AD}=9 \mathrm{~cm}, \mathrm{CF}=4 \mathrm{~cm}$ and $\mathrm{DC}=12 \mathrm{~cm}$, find AE .
(a) 3 cm
(b) 6 cm
(c) 9 cm
(d) 2 cm
5. In the above Fig., ABCD is a parallelogram, $\mathrm{AE} \perp \mathrm{DC}$ and $\mathrm{CF} \perp \mathrm{AD}$. If $\mathrm{AD}=5 \mathrm{~cm}, \mathrm{CF}=8 \mathrm{~cm}$ and $A E=4 \mathrm{~cm}$, find $A B$.
(a) 10 cm
(b) 20 cm
(c) 9 cm
(d) 12 cm
6. If $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are respectively the mid-points of the sides of a parallelogram ABCD , then ar $(\mathrm{EFGH})=$
(a) $\operatorname{ar}(\mathrm{ABCD})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{ABCD})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{ABCD})$
7. In the below Fig., ABCD is a parallelogram and EFCD is a rectangle, then ar $(\mathrm{EFGH})=$
(a) $\operatorname{ar}(\mathrm{ABCD})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{ABCD})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{ABCD})$

8. Two triangles on the same base (or equal bases) and between the same parallels are $\qquad$ in area.
(a) half
(b) one third
(c) one fourth
(d) equal
9. A median of a triangle divides it into two triangles of $\qquad$ areas.
(a) half
(b) one third
(c) one fourth
(d) equal
10. Area of a triangle is $\qquad$ the product of its base and the corresponding altitude.
(a) half
(b) one third
(c) one fourth
(d) equal
11. Area of a parallelogram is $\qquad$ the product of its base and the corresponding altitude.
(a) half
(b) one third
(c) one fourth
(d) equal
12. The area of a rhombus, the lengths of whose diagonals are 16 cm and 24 cm respectively, is
(a) $192 \mathrm{~cm}^{2}$
(b) $120 \mathrm{~cm}^{2}$
(c) $384 \mathrm{~cm}^{2}$
(d) none of these
13. The area of a trapezium whose parallel sides are 9 cm and 6 cm and the distance between these sides is 8 cm is
(a) $92 \mathrm{~cm}^{2}$
(b) $120 \mathrm{~cm}^{2}$
(c) $60 \mathrm{~cm}^{2}$
(d) none of these
14. The area of a below quadrilateral is
(a) $112 \mathrm{~cm}^{2}$
(b) $120 \mathrm{~cm}^{2}$
(c) $114 \mathrm{~cm}^{2}$
(d) none of these

15. The area of a below quadrilateral is
(a) $150 \mathrm{~cm}^{2}$
(b) $180 \mathrm{~cm}^{2}$
(c) $100 \mathrm{~cm}^{2}$
(d) none of these

16. $D, E$ and $F$ are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$, then ar (DEF)
(a) $\operatorname{ar}(\mathrm{ABC})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{ABC})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
17. $D, E$ and $F$ are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$, then ar (BDEF)
(a) $\operatorname{ar}(\mathrm{ABC})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{ABC})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
18. In a triangle $\mathrm{ABC}, \mathrm{E}$ is the mid-point of median AD , then ar $(\mathrm{BED})=$
(a) $\operatorname{ar}(\mathrm{ABC})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{ABC})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
19. In $\triangle \mathrm{ABC}, \mathrm{E}$ is any point on median AD then ar $(\mathrm{ABE})=$
(a) $\operatorname{ar}(\mathrm{ACE})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{ACE})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{ACE})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{ACE})$
20. $A B C$ and $A B D$ are two triangles on the same base $A B$. If line- segment $C D$ is bisected by $A B$ at $O$ then $\operatorname{ar}(A B C)=$
(a) $\operatorname{ar}(\mathrm{ABD})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{ABD})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{ABD})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{ABD})$
21. In Fig. ABCD is a quadrilateral and $\mathrm{BE} \| \mathrm{AC}$ and also BE meets DC produced at E then the area of $\triangle \mathrm{ADE}$ is $\qquad$ to the area of the quadrilateral ABCD .
(a) half
(b) one third
(c) one fourth
(d) equal

22. In the above sided Fig, $P$ is a point in the interior of a parallelogram $A B C D$ then ar $(A P B)+$ ar $(\mathrm{PCD})=$
(a) $\operatorname{ar}(\mathrm{ABCD})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{ABCD})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{ABCD})$
23. In Fig, PQRS and ABRS are parallelograms and X is any point on side BR then ar $(\mathrm{AX} \mathrm{S})=$
(a) $\operatorname{ar}(\mathrm{PQRS})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{PQRS})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{PQRS})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{PQRS})$
24. In Fig, PQRS and ABRS are parallelograms and X is any point on side BR then ar $(\mathrm{ABRS})=$
(a) $\operatorname{ar}(\mathrm{PQRS})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{PQRS})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{PQRS})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{PQRS})$
25. $P$ and $Q$ are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$ then ar $(\mathrm{APB})=$
(a) $\operatorname{ar}(\mathrm{BQC})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{BQC})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{BQC})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{BQC})$
26. In the below figure, $A B C D$ is trapezium in which $A B \| D C$ and its diagonals $A C$ and $B D$ intersect at O then $\operatorname{ar}(\mathrm{AOD})=$
(a) $\operatorname{ar}(\mathrm{BOC})$
(b) $\frac{1}{2} \operatorname{ar}(\mathrm{BOC})$
(c) $\frac{1}{3} \operatorname{ar}(\mathrm{BOC})$
(d) $\frac{1}{4} \operatorname{ar}(\mathrm{BOC})$

27. In the adjoining figure, ABCD is a quadrilateral in which diagonal $\mathrm{BC}=14 \mathrm{~cm}$. If $\mathrm{AL} \perp \mathrm{BD}$ and $\mathrm{CM} \perp \mathrm{BD}$ such that $\mathrm{AL}=8 \mathrm{~cm}$ and $\mathrm{CM}=6 \mathrm{~cm}$, then the area of quadrilateral is
(a) $90 \mathrm{~cm}^{2}$
(b) $95 \mathrm{~cm}^{2}$
(c) $98 \mathrm{~cm}^{2}$
(d) none of these

28. Given figure $A$ and figure $B$ such that area $(A)=20$ sq. units and area $(B)=20$ sq. units. The
(a) figure A and B are congruent
(b) figure A and B are all not congruent.
(c) figure A and B may or may not be congruent
(d) none of these.
29. Out of the given figures, mark which are not on the same base but between same parallels
(a)

(b)

(d) none of these
(c)

30. In the given figure, $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$. Mark the correct option
(a) $\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{AEC})$
(b) $\operatorname{ar}(\triangle \mathrm{DBA})=\operatorname{ar}(\triangle \mathrm{ADC})$
(c) $\operatorname{ar}(\triangle \mathrm{ADE})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
(d) $\operatorname{ar}(\triangle \mathrm{ABE})=\frac{2}{3} \operatorname{ar}(\triangle \mathrm{ABC})$

31. ABCDE is a pentagon. A line through B line parallel to AC meet DC produced at F .
(a) $\operatorname{ar}(\triangle \mathrm{ACB})=\operatorname{ar}(\triangle \mathrm{AEC})$
(b) $\operatorname{ar}(\triangle \mathrm{ABF})=\operatorname{ar}(\triangle \mathrm{CABF})$
(c) $\operatorname{ar}(\triangle \mathrm{ACF})=\operatorname{ar}(\triangle \mathrm{CBF})$
(d) $\operatorname{ar}(\triangle \mathrm{ABF})=\operatorname{ar}(\triangle \mathrm{ABC})$
32. In the below figure, ABCD is a parallelogram, then $\operatorname{ar}(\triangle \mathrm{AFB})$ is
(a) $16 \mathrm{~cm}^{2}$
(b) $8 \mathrm{~cm}^{2}$
(c) $4 \mathrm{~cm}^{2}$
(d) $2 \mathrm{~cm}^{2}$

33. In the given figure, ABCD and ABFE are parallelograms and $\operatorname{ar}$ (quad. EABC$)=17 \mathrm{~cm}^{2}, \operatorname{ar}\left(\|^{\mathrm{gm}}\right.$ $\mathrm{ABCD})=25 \mathrm{~cm}^{2}$ then $\operatorname{ar}(\triangle \mathrm{BCF})$ is
(a) $4 \mathrm{~cm}^{2}$
(b) $8 \mathrm{~cm}^{2}$
(c) $4.8 \mathrm{~cm}^{2}$
(d) $6 \mathrm{~cm}^{2}$

34. Given $\operatorname{ar}(\triangle A B C)=32 \mathrm{~cm}^{2}, A D$ is median of $\triangle A B C$, and $B E$ is median of $\triangle A B D$. IF $B O$ is median of $\triangle \mathrm{ABE}$, the $\operatorname{ar}(\triangle \mathrm{BOE})$ is
(a) $16 \mathrm{~cm}^{2}$
(b) $4 \mathrm{~cm}^{2}$
(c) $2 \mathrm{~cm}^{2}$
(d) $1 \mathrm{~cm}^{2}$
35. In the given figure, find $x$, if $A B C D$ is a rhombus and $A C=4 \mathrm{~cm}, \operatorname{ar}(A B C D)=20 \mathrm{~cm}^{2}$.

(a) 4 cm
(b) 5 cm
(c) 10 cm
(d) 2.5 cm
36. In the given figure, find the area of rhombus ABCD if $\mathrm{AO}=4 \mathrm{~cm}$ and $\mathrm{OD}=5 \mathrm{~cm}$.

A. $40 \mathrm{~cm}^{2}$
B. $80 \mathrm{~cm}^{2}$
C. $20 \mathrm{~cm}^{2}$
D. $10 \mathrm{~cm}^{2}$
37. The area of rhombus is $120 \mathrm{~cm}^{2}$ and one of its diagonals is 12 cm then the other diagonal is
A. 5 cm
B. 10 cm
C. 20 cm
D. 12 cm
38. Given in triangle $\mathrm{ABC}, \mathrm{BE}$ is the median of $\triangle \mathrm{ABC}$ and $\operatorname{ar}(\triangle \mathrm{ABE})=20 \mathrm{~cm}^{2}$, then $\operatorname{ar}(\triangle \mathrm{ABC})=$
A. $40 \mathrm{~cm}^{2}$
B. $80 \mathrm{~cm}^{2}$
C. $20 \mathrm{~cm}^{2}$
D. $10 \mathrm{~cm}^{2}$
39. In the adjoining figure, ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC} ; \mathrm{AB}=7 \mathrm{~cm} ; \mathrm{AD}=\mathrm{BC}=5 \mathrm{~cm}$ and the distance between the parallel lines is 4 cm , then length $\mathrm{DC}=$

A. 15 cm
B. 13 cm
C. 11 cm
D. 12 cm
40. In the above figure, ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC} ; \mathrm{AB}=7 \mathrm{~cm} ; \mathrm{AD}=\mathrm{BC}=5 \mathrm{~cm}$ and the distance between the parallel lines is 4 cm , then the area of trap. $\mathrm{ABCD}=$
A. $40 \mathrm{~cm}^{2}$
B. $80 \mathrm{~cm}^{2}$
C. $20 \mathrm{~cm}^{2}$
D. $10 \mathrm{~cm}^{2}$
41. In the below figure, ABCD is a parallelogram; $\mathrm{DC}=5 \mathrm{~cm} ; \mathrm{BD}=7 \mathrm{~cm}$, then the area of parallelogram ABCD is
A. $45 \mathrm{~cm}^{2}$
B. $35 \mathrm{~cm}^{2}$
C. $25 \mathrm{~cm}^{2}$
D. $10 \mathrm{~cm}^{2}$

42. In the above figure, ABCD is a parallelogram; $\mathrm{AB}=10 \mathrm{~cm} ; \mathrm{BM}=8 \mathrm{~cm}$ and $\mathrm{DL}=6 \mathrm{~cm}$, then $\mathrm{AD}=$
A. 15 cm
B. 13 cm
C. 11 cm
D. none of these
