1. The surface area of a cuboid is
(a) $2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$
(b) $3(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$
(c) $2(\mathrm{lb}-\mathrm{bh}-\mathrm{lh})$
(d) $3(\mathrm{lb}-\mathrm{bh}-\mathrm{lh})$
2. The surface area of a cube if edge ' a ' is
(a) $7 a^{2}$
(b) $6 a^{2}$
(c) $5 a^{3}$
(d) $5 a^{2}$
3. The length, breadth and height of a room is $5 \mathrm{~m}, 4 \mathrm{~m}$ and 3 m . The cost of white washing its four walls at the rate of Rs. 7.50 per m^{2} is
(a) Rs. 110
(b) Rs. 109
(c) Rs. 220
(d) Rs. 105
4. The perimeter of floor of rectangular hall is 250 m . The cost of the white washing its four walls is Rs. 15000. The height of the room is
(a) 5 m
(b) 4 m
(c) 6 m
(d) 8 m
5. The breadth of a room is twice its height and is half of its length. The volume of room is $512 \mathrm{dm}^{3}$. Its dimensions are
(a) $16 \mathrm{dm}, 8 \mathrm{dm}, 4 \mathrm{dm}$
(b) $12 \mathrm{dm}, 8 \mathrm{dm}, 2 \mathrm{dm}$
(c) $8 \mathrm{dm}, 4 \mathrm{dm}, 2 \mathrm{dm}$
(d) $10 \mathrm{dm}, 15 \mathrm{dm}, 20 \mathrm{dm}$
6. The area of three adjacent faces of a cube is x, y and z. Its volume V is
(a) $V=x y z$
(b) $V^{3}=x y z$
(c) $V^{2}=x y z$
(d) none of these
7. Two cubes each of edge 12 cm are joined. The surface area of new cuboid is
(a) $140 \mathrm{~cm}^{2}$
(b) $1440 \mathrm{~cm}^{2}$
(c) $144 \mathrm{~cm}^{2}$
(d) $72 \mathrm{~cm}^{2}$
8. The curved surface area of cylinder of height ' h ' and base radius ' r ' is
(a) $2 \pi \mathrm{rh}$
(b) $\pi \mathrm{rh}$
(c) $\frac{1}{2} \pi \mathrm{rh}$
(d) none of these
9. The total surface area of cylinder of base radius ' r ' and height ' h ' is
(a) $2 \pi(r+h)$
(b) $2 \pi \mathrm{r}(\mathrm{r}+\mathrm{h})$
(c) $3 \pi \mathrm{r}(\mathrm{r}+\mathrm{h})$
(d) $4 \pi r(r+h)$
10. The curved surface area of a cylinder of height 14 cm is $88 \mathrm{~cm}^{2}$. The diameter of its circular base is
(a) 5 cm
(b) 4 cm
(c) 3 cm
(d) 2 cm
11. It is required to make a closed cylindrical tank of height 1 m and base diameter 140 cm from a metal sheet. How many square meters a sheet are required for the same?
(a) $6.45 \mathrm{~m}^{2}$
(b) $6.48 \mathrm{~m}^{2}$
(c) $7.48 \mathrm{~m}^{2}$
(d) $5.48 \mathrm{~m}^{2}$.
12. A metal pipe is 77 cm long. Inner diameter of cross section is 4 cm and outer diameter is 4.4 cm . Its inner curved surface area is:
(a) $864 \mathrm{~cm}^{2}$
(b) $968 \mathrm{~cm}^{2}$
(c) $768 \mathrm{~cm}^{2}$
(d) none of these
13. The diameter of a roller is 84 cm and its length is 120 cm . It takes 500 complete revolutions to move once over to level a playground. The area of the playground in m^{2} is:
(a) 1584
(b) 1284
(c) 1384
(d) 1184
14. A cylindrical pillar is 50 cm in diameter and 3.5 m in height. The cost of painting its curved surface at the rate of Rs. 12.50 per m^{2} is:
(a) Rs. 68.75
(b) Rs. 58.75
(c) Rs. 48.75
(d) Rs. 38.75
15. The inner diameter of circular well is 3.5 m . It is 10 m deep. Its inner curved surface area in m^{2} is:
(a) 120
(b) 110
(c) 130
(d) 140
16. In a hot water heating system there is a cylindrical pipe of length 28 m and diameter 5 cm . The total radiating surface area in the system in m^{2} is:
(a) 6.6
(b) 5.5
(c) 4.4
(d) 3.4
17. The curved surface area of a right circular cone of slant height 10 cm and base radius 7 cm is
(a) $120 \mathrm{~cm}^{2}$
(b) $220 \mathrm{~cm}^{2}$
(c) $240 \mathrm{~cm}^{2}$
(d) $140 \mathrm{~cm}^{2}$
18. The height of a cone is 16 cm and base radius is 12 cm . Its slant height is
(a) 10 cm
(b) 15 cm
(c) 20 cm
(d) 8 cm
19. The curved surface area of a right circular cone of height 16 cm and base radius 12 cm is
(a) $753.6 \mathrm{~cm}^{2}$
(b) $1205.76 \mathrm{~cm}^{2}$
(c) $863.8 \mathrm{~cm}^{2}$
(d) $907.6 \mathrm{~cm}^{2}$
20. The curved surface area of a right circular cone of slant height 10 cm and base radius 10.5 cm is
(a) $185 \mathrm{~cm}^{2}$
(b) $160 \mathrm{~cm}^{2}$
(c) $165 \mathrm{~cm}^{2}$
(d) $195 \mathrm{~cm}^{2}$
21. The slant height of a cone is 26 cm and base diameter is 20 cm . Its height is
(a) 24 cm
(b) 25 cm
(c) 23 cm
(d) 35 cm
22. The curved surface area of a cone is $308 \mathrm{~cm}^{2}$ and its slant height is 14 cm . The radius of its base is
(a) 8 cm
(b) 7 cm
(c) 9 cm
(d) 12 cm
23. A conical tent is 10 m high and the radius of its base is 24 m . The slant height of tent is
(a) 26 m
(b) 28 m
(c) 25 m
(d) 27 m
24. The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. The cost of white washing its curved surface at the rate of Rs. 210 per $100 \mathrm{~m}^{2}$ is
(a) Rs. 1233
(b) Rs. 1155
(c) Rs. 1388
(d) Rs. 1432
25. A joker's cap is in the form of cone of base radius 7 cm and height 24 cm . The area of sheet to make 10 such caps is
(a) $5500 \mathrm{~cm}^{2}$
(b) $6500 \mathrm{~cm}^{2}$
(c) $8500 \mathrm{~cm}^{2}$
(d) $3500 \mathrm{~cm}^{2}$
26. A solid right cylinder cone is cut into two parts at the middle of its height by a plane parallel to its base. The ratio of the volume of the smaller cone to the whole cone is
(a) $1: 2$
(b) $1: 4$
(c) $1: 6$
(d) $1: 8$
27. The total surface area of a hemisphere of radius ' r ' is
(a) $2 \pi r^{2}$
(b) $4 \pi r^{2}$
(c) $3 \pi r^{2}$
(d) $5 \pi r^{2}$
28. The curved surface area of a sphere of radius 7 cm is:
(a) $516 \mathrm{~cm}^{2}$
(b) $616 \mathrm{~cm}^{2}$
(c) $716 \mathrm{~cm}^{2}$
(d) $880 \mathrm{~cm}^{2}$
29. The curved surface area of a hemisphere of radius 21 cm is:
(a) $2772 \mathrm{~cm}^{2}$
(b) $2564 \mathrm{~cm}^{2}$
(c) $3772 \mathrm{~cm}^{2}$
(d) $4772 \mathrm{~cm}^{2}$
30. The curved surface area of a sphere of radius 14 cm is:
(a) $2464 \mathrm{~cm}^{2}$
(b) $2428 \mathrm{~cm}^{2}$
(c) $2464 \mathrm{~cm}^{2}$
(d) none of these.
31. The curved surface area of a sphere of diameter 14 cm is:
(a) $516 \mathrm{~cm}^{2}$
(b) $616 \mathrm{~cm}^{2}$
(c) $716 \mathrm{~cm}^{2}$
(d) $880 \mathrm{~cm}^{2}$
32. Total surface area of hemisphere of radius 10 cm is
(a) $942 \mathrm{~cm}^{2}$
(b) $940 \mathrm{~cm}^{2}$
(c) $842 \mathrm{~cm}^{2}$
(d) $840 \mathrm{~cm}^{2}$
33. The radius of a spherical balloon increases from 7 cm to 14 cm s air is being pumped into it. The ratio of surface area of the balloon in the two cases is:
(a) $4: 1$
(b) $1: 4$
(c) $3: 1$
(d) $1: 3$
34. A matchbox measures $4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$. The volume of packet containing 12 such boxes is:
(a) $160 \mathrm{~cm}^{3}$
(b) $180 \mathrm{~cm}^{3}$
(c) $160 \mathrm{~cm}^{2}$
(d) $180 \mathrm{~cm}^{2}$
35. A cuboidal water tank is 6 m long, 5 m wide and 4.5 m deep. How many litre of water can it hold?
(a) 1350 liters
(b) 13500 liters
(c) 135000 liters
(d) 135 liters
36. A cuboidal vessel is 10 m long and 8 m wide. How high must it be made to hold 380 cubic metres of a liquid?
(a) 4.75 m
(b) 7.85 m
(c) 4.75 cm
(d) none of these
37. The capacity of a cuboidal tank is 50000 litres. The length and depth are respectively 2.5 m and 10 m . Its breadth is
(a) 4 m
(b) 3 m
(c) 2 m
(d) 5 m
38. A godown measures $40 \mathrm{~m} \times 25 \mathrm{~m} \times 10 \mathrm{~m}$. Find the maximum number of wooden crates each measuring $1.5 \mathrm{~m} \times 1.25 \mathrm{~m} \times 0.5 \mathrm{~m}$ that can be stored in the godown.
(a) 18000
(b) 16000
(c) 15000
(d) 14000
39. A river 3 m deep and 40 m wide is flowing at the rate of 2 km per hour. How much water will fall into the sea in a minute?
(a) $4000 \mathrm{~m}^{3}$
(b) $40 \mathrm{~m}^{3}$
(c) $400 \mathrm{~m}^{3}$
(d) $40000 \mathrm{~m}^{3}$
40. The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm . How many litres of water can it hold?
(a) 33.75 litre
(b) 34.65 litre
(c) 35.75 litre
(d) 38.75 litre
41. If the lateral surface of a cylinder is 94.2 cm 2 and its height is 5 cm , then find radius of its base
(a) 5 cm
(b) 4 cm
(c) 3 cm
(d) 6 cm
42. It costs Rs 2200 to paint the inner curved surface of a cylindrical vessel 10 m deep. If the cost of painting is at the rate of Rs 20 per m , find radius of the base,
(a) 1.75 m
(b) 1.85 m
(c) 1.95 m
(d) 1.65 m
43. The height and the slant height of a cone are 21 cm and 28 cm respectively. Find the volume of the cone.
(a) $5546 \mathrm{~cm}^{3}$
(b) $7546 \mathrm{~cm}^{3}$
(c) $5564 \mathrm{~m}^{3}$
(d) $8546 \mathrm{~cm}^{3}$
44. Find the volume of the right circular cone with radius 6 cm , height 7 cm
(a) $254 \mathrm{~cm}^{3}$
(b) $264 \mathrm{~cm}^{3}$
(c) $274 \mathrm{~cm}^{2}$
(d) $284 \mathrm{~cm}^{3}$
45. The radius and height of a conical vessel are 7 cm and 25 cm respectively. Its capacity in litres is
(a) 1.232 litre
(b) 1.5 litre
(c) 1.35 litre
(d) 1.6 litre
46. The height of a cone is 15 cm . If its volume is 1570 cm , find the radius of the base.
(a) 12 cm
(b) 10 cm
(c) 15 cm
(d) 18 cm
47. If the volume of a right circular cone of height 9 cm is $48 \pi \mathrm{~cm}^{3}$, find the diameter of its base.
(a) 12 cm
(b) 10 cm
(c) 6 cm
(d) 8 cm
48. A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres?
(a) 38.5 kl
(b) 48.5 kl
(c) 39.5 kl
(d) 47.5 kl
49. Find the capacity in litres of a conical vessel with radius 7 cm , slant height 25 cm
(a) 1.232 litre
(b) 1.5 litre
(c) 1.35 litre
(d) none of these
50. The diameter of the moon is approximately one-fourth of the diameter of the earth. What fraction of the volume of the earth is the volume of the moon?
(a) $\frac{1}{64}$
(b) $\frac{1}{32}$
(c) $\frac{1}{16}$
(d) $\frac{1}{48}$
51. The dimensions of a cuboid are $50 \mathrm{~cm} \times 40 \mathrm{~cm} \times 10 \mathrm{~cm}$. Its volume in litres is:
(a) 10 litres
(b) 12 litres
(c) 20 litres
(d) 25 litres
52. The volume of a cuboidal tank is $250 \mathrm{~m}^{3}$. If its base area is $50 \mathrm{~m}^{2}$ then depth of the tank is
(a) 5 m
(b) 200 m
(c) 300 m
(d) 12500 m
53. The length, breadth and height of a cuboidal solid is $4 \mathrm{~cm}, 3 \mathrm{~cm}$ and 2 cm respectively. Its volume is
(a) $(4+3+2) \mathrm{cm}^{3}$
(b) $2(4+3+2) \mathrm{cm}^{3}$
(c) $(4 \times 3 \times 2) \mathrm{cm}^{3}$
(d) $2(4+3) \times 2 \mathrm{~cm}^{3}$
54. The volume of a cuboidal solid of length 8 m and breadth 5 m is $200 \mathrm{~m}^{3}$. Find its height.
(a) 5 m
(b) 6 m
(c) 15 m
(d) 18 m
55. The curved surface area of a sphere is $616 \mathrm{~cm}^{2}$. Its radius is
(a) 7 cm
(b) 5 cm
(c) 6 cm
(d) 8 cm
56. If radius of a sphere is $\frac{2 d}{3}$ then its volume is
(a) $\frac{32}{81} \pi d^{3}$
(b) $\frac{23}{4} \pi d^{3}$
(c) $\frac{32}{3} \pi d^{3}$
(d) $\frac{34}{3} \pi d^{3}$
57. The capacity of a cylindrical tank is $6160 \mathrm{~cm}^{3}$. Its base diameter is 28 m . The depth of this tank is
(a) 5 m
(b) 10 m
(c) 15 m
(d) 8 m
58. The volume of a cylinder of radius r and length h is:
(a) $2 \pi \mathrm{rh}$
(b) $\frac{4}{3} \pi r^{2} h$
(c) $\pi r^{2} h$
(d) $2 \pi r^{2} h$
59. Base radius of two cylinder are in the ratio $2: 3$ and their heights are in the ratio $5: 3$. The ratio of their volumes is
(a) $27: 20$
(b) $25: 24$
(c) $20: 27$
(d) $15: 20$
60. If base radius and height of a cylinder are increased by 100% then its volume increased by:
(a) 30%
(b) 40%
(c) 42%
(d) 33.1%
61. The diameter of a sphere is 14 m . The volume of this sphere is
(a) $1437 \frac{1}{3} \mathrm{~m}^{3}$
(b) $1357 \frac{1}{3} \mathrm{~m}^{3}$
(c) $1437 \frac{2}{3} \mathrm{~m}^{3}$
(d) $1337 \frac{2}{3} \mathrm{~m}^{3}$
62. The volume of a sphere is $524 \mathrm{~cm}^{3}$. The diameter of sphere is
(a) 5 cm
(b) 4 cm
(c) 3 cm
(d) 7 cm
63. The total surface area of a cylinder is $40 \pi \mathrm{~cm}^{2}$. If height is 5.5 cm then its base radius is
(a) 5 cm
(b) 2.5 cm
(c) 1.5 cm
(d) 10 cm
64. The area of circular base of a right circular cone is $78.5 \mathrm{~cm}^{2}$. If its height is 12 cm then its volume is
(a) $31.4 \mathrm{~cm}^{3}$
(b) $3.14 \mathrm{~cm}^{3}$
(c) $314 \mathrm{~cm}^{3}$
(d) none of these
65. The base radius of a cone is 11.3 cm and curved surface area is $355 \mathrm{~cm}^{2}$. Its height is (Take $\pi=\frac{355}{113}$)
(a) 5 cm
(b) 10 cm
(c) 11 cm
(d) 9 cm
66. If the dimensions of a cuboid are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 10 cm , then its surface area is
A. $82 \mathrm{~cm}^{2}$
B. $\quad 123 \mathrm{~cm}^{2}$
C. $\quad 164 \mathrm{~cm}^{2}$
D. $216 \mathrm{~cm}^{2}$
67. The volume of the cuboid in Q .1 is
A. $17 \mathrm{~cm}^{3}$
B. $\quad 164 \mathrm{~cm}^{3}$
C. $120 \mathrm{~cm}^{3}$
D. $240 \mathrm{~cm}^{3}$
68. The surface area of a cuboid is 1372 sq. cm . If its dimensions are in the ratio of $4: 2: 1$, then its length is
A. 7 cm
B. 14 cm
C. 21 cm
D. 28 cm
69. The base radius and height of a right circular cylinder are 7 cm and 13.5 cm . The volume of cylinder is
A. $\quad 1579 \mathrm{~cm}^{3}$
B. $\quad 1897 \mathrm{~cm}^{3}$
C. $2079 \mathrm{~cm}^{3}$
D. $2197 \mathrm{~cm}^{3}$
70. The base radius of a cone is 5 cm and its height is 12 cm . Its slant height is
A. 13 cm
B. $\quad 19.5 \mathrm{~cm}$
C. 26 cm
D. 52 cm
71. The curved surface area of a cylinder of height 14 cm is $88 \mathrm{sq} . \mathrm{cm}$. The diameter of the cylinder is
A. $\quad 0.5 \mathrm{~cm}$
B. $\quad 1.0 \mathrm{~cm}$
C. $\quad 1.5 \mathrm{~cm}$
D. $\quad 2.0 \mathrm{~cm}$
72. The lateral surface area of a right circular cone of height 28 cm and base radius 21 cm is
A. $\quad 1155 \mathrm{~cm}^{2}$
B. $1055 \mathrm{~cm}^{2}$
C. $2110 \mathrm{~cm}^{2}$
D. $2310 \mathrm{~cm}^{2}$
73. The circumference of the base of a 8 m high conical tent is $\frac{264}{7} \mathrm{~m}^{2}$. The area of canvas required to make the tent is
A. $\frac{1360}{7} \mathrm{~cm}^{2}$
B. $\frac{1360}{14} \mathrm{~cm}^{2}$
C. $286 \mathrm{~cm}^{2}$
D. $98 \mathrm{~cm}^{2}$
74. The area of metal sheet required to make a closed hollow cone of height 24 m and base radius 7 m is
A. $\quad 176 \mathrm{~m}^{2}$
B. $352 \mathrm{~m}^{2}$
C. $\quad 704 \mathrm{~m}^{2}$
D. $\quad 1408 \mathrm{~m}^{2}$
75. The diameter of a sphere whose surface area is $346.5 \mathrm{~cm}^{2}$ is
A. $\quad 5.25 \mathrm{~cm}$
B. $\quad 5.75 \mathrm{~cm}$
C. $\quad 11.5 \mathrm{~cm}$
D. $\quad 10.5 \mathrm{~cm}$
76. The radius of a spherical baloon increases from 7 cm to 14 cm when air is pumped into it. The ratio of the surface area of original baloon to inflated one is
A. $1: 2$
B. $1: 3$
C. $1: 4$
D. $4: 3$
77. The circumference of the base of a cylinderical vessel is 132 cm and its height is 25 cm . If 1000 cu.cm $=1$ liter, the number of litres, of water the vessel can hold is
A. $\quad 17.325$
B. $\quad 34.65$
C. 34.5
D. 69.30
78. The number of litres of milk a hemispherical bowl of radius 10.5 cm can hold is
A. 2.47
B. 2.476
C. 2.376
D. 3.476
79. The number of bricks, each measuring $18 \mathrm{~cm} \times 12 \mathrm{~cm} \times 10 \mathrm{~cm}$ are required to build a 1 wall $12 \mathrm{~m} \times 0.6 \mathrm{~m} \times 4.5 \mathrm{~m}$ if $\frac{1}{10}$ of its volume is taken by mortar, is
A. 15000
B. 13500
C. 12500
D. 13900
80. The radius of a sphere is 10 cm . If its radius is increased by 1 cm , the volume of the sphere is increased by
A. 13.3%
B. 21.1%
C. 30%
D. 33.1%
81. The total surface area of a solid hemisphere of radius r is
(A) πr^{2}
(B) $2 \pi r^{2}$
(C) $3 \pi r^{2}$
(D) $4 \pi r^{2}$
82. The volume and the surface area of a sphere are numerically equal, then the radius of sphere is
(A) 0 units
(B) 1 units
(C) 2 units
(D) 3 units
83. A cylinder, a cone and a hemisphere are of the same base and of the same height. The ratio of their volumes is
(A) $1: 2: 3$
(B) $2: 1: 3$
(C) $3: 1: 2$
(D) $3: 2: 1$
84. Small spheres, each of radius 2 cm , are made by melting a solid iron ball of radius 6 cm , then the total number of small spheres is
(A) 9
(B) 6
(C) 27
(D) 81
85. A solid sphere of radius rcm is melted and recast into the shape of a solid cone of height r . Then the radius of the base of cone is
(A) $2 r$
(B) r
(C) 4 r
(D) 3 r
86. Three solid spheres of diameters $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm are melted to form a single solid sphere. The diameter of the new sphere is
(A) 6 cm
(B) 4.5 cm
(C) 3 cm
(D) 12 cm
87. The radii of the ends of a frustum of a cone 40 cm high are 38 cm and 8 cm . The slant height of the frustum of cone is
(A) 50 cm
(B) $10 \sqrt{7} \mathrm{~cm}$
(C) 60.96 cm
(D) $4 \sqrt{2} \mathrm{~cm}$
88. The circular ends of a bucket are of radii 35 cm and 14 cm and the height of the bucket is 40 cm . Its volume is
(A) $60060 \mathrm{~cm}^{3}$
(B) $80080 \mathrm{~cm}^{3}$
(C) $70040 \mathrm{~cm}^{3}$
(D) $80160 \mathrm{~cm}^{3}$
89. If the radii of the ends of a bucket are 5 cm and 15 cm and it is 24 cm high, then its surface area is
(A) $1815.3 \mathrm{~cm}^{2}$
(B) $1711.3 \mathrm{~cm}^{2}$
(C) $2025.3 \mathrm{~cm}^{2}$
(D) $2360 \mathrm{~cm}^{2}$
90. If the radii of the ends of a 42 cm high bucket are 16 cm and 11 cm , determine its capacity (take $\pi=\frac{22}{7}$)
(A) $24222 \mathrm{~cm}^{3}$
(B) $24332 \mathrm{~cm}^{3}$
(C) $24322 \mathrm{~cm}^{3}$
(D) none of these
