1. Find the coordinates of the middle point of the line joining the points $(5,-1)$ and $(1,4)$.
2. Find the coordinates of the point which divides the join of the points $(8,9)$ and $(-$ 7,4), internally in the ratio $2: 3$.
3. Find the ratio in which a given the point $(2,1)$ divides the join of the points $(1,2)$ and $(4,7)$.
4. Find the ratio in which the axes divide the line joining the points $(-2,5)$ and $(1,9)$.
5. Find the centroid of the triangle whose angular points are (3, -5), $(-7,4)$ and (10, 2) respectively.
6. Find the point of trisection of the line segment joining the points $(1,2)$ and $(11,9)$.
7. Determine the ratio in which the point $P(m, 6)$ divides the join of $A(-4,3)$ and B $(2,8)$. Also find the value of m.
8. The mid-point of the line segment joining $(2 a, 4)$ and $(-2,3 b)$ is $(1,2 a+1)$. Find the value of a and b.
9. Find the reflection of the point $A(7,-4)$ in the point $p(3,-1)$.
10. If the points $A(a,-11), B(5, b), C(2,15)$ and $D(1,1)$ are the vertices of a parallelogram $A B C D$, find the value of a and b.
11. The coordinates of the mid-points of sides of a triangle are (1, 2), ($0,-1$) and (2, 1). Find its centroid.
12. In the adjoining figure, P and Q have coordinates $(4,6)$ and $(0,3)$ respectively. Find.
13. Find the value of x so that the line passing through the points $(1,4)$ and $(x, 6)$ makes an angle of 45° with the positive direction of the x - axis.
14. State which of the following lines are parallel or perpendicular or neither:
a. Through $(2,-3)$ and $(4,-1)$; through $(-6,3)$ and $(-4,5)$
b. Through $(1,-5)$ and $(5,-3)$; through $(2,5)$ and $(4,1)$

15 . Show that the point $(6,4),(8,6)$ and $(5,3)$ are collinear.
16. State the equation of the line which has the y-intercept equal to $\frac{4}{3}$ and is perpendicular to $3 x-4 y+11=0$.
17. Find the equation of the straight line through the given point $P(-1,-5)$ and having its slope equal to $\frac{9}{5}$.
18. Find the equation of the straight line joining the points $\mathrm{A}(5,7)$ and $\mathrm{B}(-1,2)$.
19. Given that $(a, 2 a)$ lies on the line $\frac{y}{2}=3 x-6$, find the value of a.
20. Find the equation to the straight line passing through the point $(3,-4)$ and cutting off intercepts, equal but of opposite signs, from the two axes.
21. $A(2,-4), B(3,3)$ and $C(-1,5)$ are the vertices of triangle $A B C$. Find the equation of:
a. The median of the triangle through A; the length of $A D$
b. The altitude of triangle through B.
22. $(-2,-1)$ and $(4,-5)$ are the coordinates of vertices B and D respectively of a rhombus ABCD . Find the equation of the diagonal AC .
23. Write down the equation of the line whose gradients is $\frac{3}{4}$ and which passes through P, where P divides the line segment joining $A(2,-5)$ and $B(-5,9)$ in the ratio 3:4.
24. The figure alongside represents lines $y=x+1$ and $y=\sqrt{3} x-1$. Write down the angles that the line make with the positive direction of x-axis. Hence determine the angle θ.

1. The triangle $A(1,2) B(4,4)$ and $C(3,7)$ is first reflected in the line $y-0$ onto triangle $A^{\prime} B^{\prime} C^{\prime}$ and then triangle $A^{\prime} B^{\prime} C^{\prime}$ is reflected in the origin onto triangle $A^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$. Write down the co-ordinates of:
i. $\quad \mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ and C^{\prime}
ii. A", B" and C"
2. A point P is reflected in the x-axis. Co-ordinated of its image are $(8,-6)$.
i. Find the co-ordinates of P.
ii. Find the co-ordinates of the image of P under reflection in the y -axis.
3. Points $(-5,0)$ and $(4,0)$ are invariant points under reflection in the line L_{1}; Points $(0,-6)$ and $(0,5)$ are invariant on reflection in the line L_{2}.
a. Name or write equations for the lines L_{1} and L_{2}.
b. Write down the images of $\mathrm{P}(2,6)$ and $\mathrm{Q}(-8,-3)$ on reflection inL L_{1}. Name the images as P^{\prime} and Q^{\prime} respectively.
c. Write down the images of P and Q on reflection inL2. Name the images as $\mathrm{P}^{\prime \prime}$ and Q" respectively.
d. State or describe a single transformation that maps Q^{\prime} on to $Q^{\prime \prime}$
4. Find the reflection of the point $\mathrm{P}(-1,3)$ in the line $\mathrm{x}=2$
5. Find the reflection of the point $Q(2,1)$ in the line $y+3=0$
6. The points $P(5,1)$ and $Q(-2,-2)$ are reflected in line $x=2$. Use graph paper to find the images P^{\prime} and Q^{\prime} of points P and Q respectively in line $x=2$. Take 2 cm equal to 2 units.
7. Use the graph paper for this question. (Take two divisions= 1 unit on both the axes) Plot the points $P(3,2)$ and $Q(-3,-2)$. From P and Q, draw perpendiculars $P M$ and $Q N$ on the x -axis.
a. Write the co-ordinates of points M and N .
b. Name the image of P on reflection in the origin.
c. Assign the special name to geometrical figure PMQN and find its area.
d. Write the co-ordinates of the point to which M is mapped on reflection in
i. x-axis,
ii. y-axis
iii. origin.
8. Use graph paper for this question.

The points $\mathrm{A}(2,3), \mathrm{B}(4,5)$ and $\mathrm{C}(7,2)$ are the vertices of $\Delta \mathrm{ABC}$.
i. Write down the co-ordinates of $A^{\prime}, B^{\prime}, C^{\prime}$ if $\Delta A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$. When reflected in the origin.
ii. Write down the co-ordinates of $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ if $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is the image of $\triangle A B C$. When reflected in the x -axis.
iii. Mention the special name of the quadrilateral $B C C$ " $B^{\prime \prime}$ and find its area.

