1. Find the length of tangent drawn to a circle with radius 7 cm from a point 25 cm away from the centre.
(a) 24 cm
(b) 27 cm
(c) 26 cm
(d) 25 cm
2. A point P is 26 cm away from the centre of a circle and the length of the tangent drawn from P to the circle is 24 cm . Find the radius of the circle.
(a) 11 cm
(b) 10 cm
(c) 16 cm
(d) 15 cm
3. From an external point P, tangents $P A$ and $P B$ are drawn to a circle with centre O. If $C D$ is the tangent to the circle at a point E and $\mathrm{PA}=14 \mathrm{~cm}$, find the perimeter of the $\triangle \mathrm{PCD}$.
(a) 28 cm
(b) 27 cm
(c) 26 cm
(d) 25 cm

4. In the above sided figure, PA and PB are tangents such that $\mathrm{PA}=9 \mathrm{~cm}$ and $\angle \mathrm{APB}=60^{\circ}$. Find the length of the chord AB .
(a) 4 cm
(b) 7 cm
(c) 6 cm
(d) 9 cm
5. In the below figure the circle touches all the sides of a quadrilateral ABCD whose three sides are $A B=6 \mathrm{~cm}, B C=7 \mathrm{~cm}, C D=4 \mathrm{~cm}$. Find $A D$.
(a) 4 cm
(b) 3 cm
(c) 6 cm
(d) 9 cm

6. In the above sided Fig., if TP and TQ are the two tangents to a circle with centre O so that $\angle \mathrm{POQ}=110^{\circ}$, then $\angle \mathrm{PTQ}$ is equal to
(a) 60°
(b) 70°
(c) 80°
(d) 90°
7. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle \mathrm{POA}$ is equal to
(a) 60°
(b) 70°
(c) 80^{0}
(d) 50°
8. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.
(a) 4 cm
(b) 3 cm
(c) 6 cm
(d) 5 cm
9. From a point $\mathrm{P}, 10 \mathrm{~cm}$ away from the centre of a circle, a tangent PT of length 8 cm is drawn. Find the radius of the circle.
(a) 4 cm
(b) 7 cm
(c) 6 cm
(d) 5 cm
10. PT is tangent to a circle with centre $\mathrm{O}, \mathrm{OT}=56 \mathrm{~cm}, \mathrm{TP}=90 \mathrm{~cm}$, find OP
(a) 104 cm
(b) 107 cm
(c) 106 cm
(d) 105 cm
11. TP and TQ are the two tangents to a circle with center O so that angle $\angle \mathrm{POQ}=130^{\circ}$. Find $\angle \mathrm{PTQ}$.
(a) 50^{0}
(b) 70^{0}
(c) 80^{0}
(d) none of these
12. From a point Q, the length of the tangent to a circle is 40 cm and the distance of Q from the centre is 41 cm . Find the radius of the circle.
(a) 4 cm
(b) 3 cm
(c) 6 cm
(d) 9 cm
13. The common point of a tangent to a circle with the circle is called \qquad
(a) centre
(b) point of contact
(c) end point
(d) none of these.
14. PQ is a chord of length 8 cm of a circle of radius 5 cm . The tangents at P and Q intersect at a point T (see below figure). Find the length TP.
(a) $\frac{20}{3} \mathrm{~cm}$
(b) $\frac{10}{3} \mathrm{~cm}$
(c) $\frac{40}{3} \mathrm{~cm}$
(d) none of these

15. The lengths of tangents drawn from an external point to a circle are equal.
(a) half
(b) one third
(c) one fourth (d) equal
16. In below Fig, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If $\angle \mathrm{DBC}=$ 55° and $\angle \mathrm{BAC}=45^{\circ}$, find $\angle \mathrm{BCD}$.
(a) 80°
(b) 60°
(c) 90°
(d) none of these

17. In above sided Fig, A, B and C are three points on a circle with centre O such that $\angle \mathrm{BOC}=30^{\circ}$ and $\angle A O B=60^{\circ}$. If D is a point on the circle other than the $\operatorname{arc} \mathrm{ABC}$, find $\angle \mathrm{ADC}$.
(a) 45°
(b) 60°
(c) 90°
(d) none of these
18. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc
(a) 150°
(b) 30°
(c) 60°
(d) none of these
19. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the major arc.
(a) 150°
(b) 30°
(c) 60°
(d) none of these
20. In the below Fig., $\angle \mathrm{ABC}=69^{\circ}, \angle \mathrm{ACB}=31^{\circ}$, find $\angle \mathrm{BDC}$.
(a) 80°
(b) 60°
(c) 90°
(d) 100°

21. In the above sided Fig., $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are four points on a circle. AC and BD intersect at a point E such that $\angle \mathrm{BEC}=130^{\circ}$ and $\angle \mathrm{ECD}=20^{\circ}$. Find $\angle \mathrm{BAC}$.
(a) 110°
(b) 150°
(c) 90°
(d) 100°
22. ABCD is a cyclic quadrilateral whose diagonals intersect at a point E . If $\angle \mathrm{DBC}=70^{\circ}, \angle \mathrm{BAC}$ is 30°, find $\angle \mathrm{BCD}$.
(a) 80°
(b) 60°
(c) 90°
(d) 100^{0}
23. ABCD is a cyclic quadrilateral. If $\angle \mathrm{BCD}=100^{\circ}, \angle \mathrm{ABD}$ is 30°, find $\angle \mathrm{ABD}$.
(a) 80°
(b) 60°
(c) 90°
(d) 70°
24. ABCD is a cyclic quadrilateral. If $\angle \mathrm{DBC}=80^{\circ}, \angle \mathrm{BAC}$ is 40°, find $\angle \mathrm{BCD}$.
(a) 80°
(b) 60°
(c) 90°
(d) 70°
25. ABCD is a cyclic quadrilateral in which BC is parallel to $\mathrm{AD}, \angle \mathrm{ADC}=110^{\circ}$ and $\angle \mathrm{BAC}=50^{\circ}$. Find $\angle \mathrm{DAC}$
(a) 80°
(b) 60°
(c) 90°
(d) 170^{0}
26. In the below figure, $\angle \mathrm{POQ}=80^{\circ}$, find $\angle \mathrm{PAQ}$
(a) 80°
(b) 40°
(c) 100°
(d) none of these

27. In the above figure, $\angle P Q R=100^{\circ}$, where P, Q and R are points on a circle with centre O. Find $\angle O P R$.
(a) 80°
(b) 40°
(c) 10°
(d) none of these
28. Distance of chord $A B$ from the centre is 12 cm and length of the chord is 10 cm . Then diameter of the circle is
A. 26 cm
B. 13 cm
C. $\sqrt{244} \mathrm{~cm}$
D. 20 cm
29. Two circles are drawn with side $A B$ and $A C$ of a triangle $A B C$ as diameters. Circles intersect at a point D, Then
A. $\angle \mathrm{ADB}$ and $\angle \mathrm{ADC}$ are equal
B. $\angle \mathrm{ADB}$ and $\angle \mathrm{ADC}$ are compementary
C. Points B, D, C are collinear
D. none of these
30. The region between a chord and either of the arcs is called
A. an arc
B. a sector
C. a segment
D. a semicircle
31. A circle divides the plane in which it lies, including circle in
A. 2 parts
B. 3 parts
C. 4 parts
D. 5 parts
32. If diagonals of a cyclic quadrilateral are the diameters of a circle through the vertices of a quadrilateral, then quadrilateral is a
A. parallelogram
B. square
C. rectangle
D. trapezium
33. Given three non collinear points, then the number of circles which can be drawn through these three points are
A. one
B. zero
C. two
D. infinite
34. In a circle with centre O, AB and CD are two diameters perpendicular to each other. The length of chord AC is
A. 2 AB
B. $\sqrt{2} \mathrm{AB}$
C. $\frac{1}{2} \mathrm{AB}$
D. $\frac{1}{\sqrt{2}} \mathrm{AB}$
35. If $A B$ is a chord of a circle, P and Q are the two points on the circle different from A and B, then
A. $\angle \mathrm{APB}=\angle \mathrm{AQB}$
B. $\angle \mathrm{APB}+\angle \mathrm{AQB}=180^{\circ}$
C. $\angle \mathrm{APB}+\angle \mathrm{AQB}=90^{\circ}$
D. $\angle \mathrm{APB}+\angle \mathrm{AQB}=180^{\circ}$
36. In the above figure, $\angle \mathrm{PQR}=90^{\circ}$, where P, Q and R are points on a circle with centre O . Find reflex $\angle \mathrm{POR}$.
(a) 180°
(b) 140°
(c) 45°
(d) none of these

37. In below Fig, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If $\angle \mathrm{DBC}=$ 60° and $\angle B A C=30^{\circ}$, find $\angle B C D$.
(a) 80°
(b) 60°
(c) 90°
(d) none of these

