- 1. The angle of elevation of the top of a tower from a point on the ground, which is 20m away from the foot of the tower is 60° . Find the height of the tower.
 - (a) $10\sqrt{3}$ m
- (b) $30\sqrt{3}$ m
- (c) $20\sqrt{3}$ m (d) none of these
- 2. The height of a tower is 10m. What is the length of its shadow when Sun's altitude is 45° ?
 - (a) 10 m
- (b) 30 m
- (c) 20 m
- (d) none of these
- 3. The angle of elevation of a ladder leaning against a wall is 60° and the foot of the ladder is 9.5 m away from the wall. Find the length of the ladder.
 - (a) 10 m
- (b) 19 m
- (c) 20 m
- (d) none of these
- **4.** If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, what is the angle of elevation of the Sun?
 - (a) 30^{0}
- (b) 60^0
- (c) 45^0
- (d) none of these
- 5. What is the angle of elevation of the Sun when the length of the shadow of a vertical pole is equal to its height?
 - (a) 30^0
- (b) 60^{0}
- (c) 45^0
- (d) none of these
- **6.** From a point on the ground, 20 m away from the foot of a vertical tower, the angle of elevation of the top of the tower is 60° , what is the height of the tower?
 - (a) $10\sqrt{3}$ m
- (b) $30\sqrt{3}$ m
- (c) $20\sqrt{3}$ m (d) none of these
- 7. If the angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary, find the height of the tower.
 - (a) 10 m
- (b) 6 m
- (c) 8 m
- (d) none of these
- 8. In the below fig. what are the angles of depression from the observing positions D and E of the object A?
 - (a) 30° , 45°
- (b) 60° , 45°
- (c) 45^0 , 60^0
- (d) none of these

- **9.** The ratio of the length of a rod and its shadow is 1: $\sqrt{3}$. The angle of elevation of the sun is (b) 60^0 (c) 45^0 (d) none of these (a) 30^0
- 10. If the angle of elevation of a tower from a distance of 100m from its foot is 60° , then the height of the tower is

 - (a) $100\sqrt{3}$ m (b) $\frac{200}{\sqrt{3}}$ m (c) $50\sqrt{3}$ m (d) $\frac{100}{\sqrt{3}}$ m

MATHEMATICS 10THCBSE

1.	If the altitude of the sun is at 60° , then the height of the vertical tower that will cast a shadow of
	length 30m is

(a)
$$30\sqrt{3} \text{ m}$$

(c)
$$\frac{30}{\sqrt{3}}$$
 m

(c)
$$\frac{30}{\sqrt{3}}$$
 m (d) $15\sqrt{2}$ m

2. A tower subtends an angle of 30^{0} at a point on the same level as its foot. At a second point 'h' metres above the first, the depression of the foot of the tower is 60° . The height of the tower is

(a)
$$\frac{h}{2}$$
 m

(a)
$$\frac{h}{2}$$
 m (b) $\frac{h}{3}$ m

(c)
$$\sqrt{3}h$$
 m (d) $\frac{h}{\sqrt{3}}$ m

(d)
$$\frac{h}{\sqrt{3}}$$
 m

3. A tower is $100\sqrt{3}$ m high. Find the angle of elevation if its top from a point 100 m away from its

(a) 30^0

(b) 60°

(c) 45^0

(d) none of these

4. The angle of elevation of the top of a tower from a point on the ground, which is 30m away from the foot of the tower is 30° . Find the height of the tower.

(a) $10\sqrt{3}$ m (b) $30\sqrt{3}$ m

(c) $20\sqrt{3}$ m (d) none of these

5. The string of a kite is 100m long and it makes an angle of 60° with the horizontal. Find the height of the kite, assuming that there is no slack in the string.

(a) $100\sqrt{3}$ m (b) $\frac{200}{\sqrt{3}}$ m (c) $50\sqrt{3}$ m (d) $\frac{100}{\sqrt{3}}$ m

(b)
$$\frac{200}{\sqrt{3}}$$
 m

(c)
$$50\sqrt{3}$$
 m

(d)
$$\frac{100}{\sqrt{3}}$$
 m

6. A kite is flying at a height of 60m above the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.

(a) $40\sqrt{3}$ m

(b) $30\sqrt{3}$ m

(c) $20\sqrt{3}$ m (d) none of these

7. A circus artist is climbing a 20m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole if the angle made by the rope with the ground level is 30° .

(a) 10 m

(b) 30 m

(c) 20 m

(d) none of these

8. A tower is 50m high, Its shadow ix 'x' metres shorter when the sun's altitude is 450 than when it is 30°. Find the value of 'x'

(a) $100\sqrt{3}$ m (b) $\frac{200}{\sqrt{2}}$ m

(c) $50\sqrt{3}$ m (d) none of these

9. Find the angular elevation of the sun when the shadow of a 10m long pole is $10\sqrt{3}$ m.

(a) 30^{0}

(b) 60^0

(c) 45^0

(d) none of these

10. A vertical pole stands on the level ground. From a point on the ground 25m away from the foot of the pole, the angle of elevation of its top is found to be 60° . Find the height of the pole.

(a) $25\sqrt{3}$ m (b) $\frac{25}{\sqrt{3}}$ m

(c) $50\sqrt{3}$ m (d) none of these

MCQ WORKSHEET-III SOME APPLICATIONS TO TRIGONOMETRY

MATHEMATICS 10THCBSE

1.	A kite is flying at a height of 75m above the ground. The inclination of the string with the ground is 60° . Find the length of the string, assuming that there is no slack in the string.
2.	(a) $40\sqrt{3}$ m (b) $30\sqrt{3}$ m (c) $50\sqrt{3}$ m (d) none of these The angle of elevation of the tope of a tree from a point A on the ground is 60° . On walking 20m away from its base, to a point B, the angle of elevation changes to 30° . Find the height of the tree.
	(a) $10\sqrt{3}$ m (b) $30\sqrt{3}$ m (c) $20\sqrt{3}$ m (d) none of these
3.	A 1.5m tall boy stands at a distance of 2m from lamp post and casts a shadow of 4.5m on the ground. Find the height of the lamp post. (a) 3 m (b) 2.5 m (c) 5 m (d) none of these
4.	The height of the tower is 100m. When the angle of elevation of the sun changes from 30^0 to 45^0 , the shadow of the tower becomes 'x' meters less. The value of 'x' is
	(a) $100\sqrt{3}$ m (b) 100 m (c) $100(\sqrt{3}-1)$ m (d) $\frac{100}{\sqrt{3}}$
5.	The tops of two poles of height 20m and 14m are connected by a wire. If the wire makes an angle of 30^0 with horizontal, then the length of the wire is (a) 12 m (b) 10 m (c) 8 m (d) 6 m
6.	If the angles of elevation of a tower from two points distant a and b ($a > b$) from its foot and in the same straight line from it are 30^0 and 60^0 , then the height of the tower is
	(a) $\sqrt{a+b}$ m (b) $\sqrt{a-b}$ m (c) \sqrt{ab} m (d) $\sqrt{\frac{a}{b}}$ m
7.	The angles of elevation of the top of a tower from two points at a distance of 'a' m and 'b' m from the base of the tower and in the same straight line with it are complementary, then the height of the tower is
	(a) $\sqrt{a+b}$ m (b) $\sqrt{a-b}$ m (c) \sqrt{ab} m (d) $\sqrt{\frac{a}{b}}$ m
8.	From the top of a cliff 25m high the angle of elevation of a tower is found to be equal to the angle of depression of the foot of the tower. The height of the tower is (a) 25 m (b) 50 m (c) 75 m (d) 100 m
9.	If the angle of elevation of a cloud from a point 200m above a lake is 30^{0} and the angle of depression of its reflection in the lake is 60^{0} , then the height of the cloud above the lake is (a) 200 m (b) 500 m (c) 30 m (d) 400 m
10.	The angle of elevation of a cloud from a point 'h' meter above a lake is ' α '. The angle of depression of its reflection in the lake is 45° . The height of the cloud is
	(a) h.tan α (b) $\frac{h(1+\tan\alpha)}{(1-\tan\alpha)}$ (c) $\frac{h(1-\tan\alpha)}{(1+\tan\alpha)}$ (d) none of these