1. The angle of elevation of the top of a tower from a point on the ground, which is 20 m away from the foot of the tower is 60°. Find the height of the tower.
(a) $10 \sqrt{3} \mathrm{~m}$
(b) $30 \sqrt{3} \mathrm{~m}$
(c) $20 \sqrt{3} \mathrm{~m}$
(d) none of these
2. The height of a tower is 10 m . What is the length of its shadow when Sun's altitude is 45^{0} ?
(a) 10 m
(b) 30 m
(c) 20 m
(d) none of these
3. The angle of elevation of a ladder leaning against a wall is 60° and the foot of the ladder is 9.5 m away from the wall. Find the length of the ladder.
(a) 10 m
(b) 19 m
(c) 20 m
(d) none of these
4. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}: 1$, what is the angle of elevation of the Sun?
(a) 30°
(b) 60^{0}
(c) 45^{0}
(d) none of these
5. What is the angle of elevation of the Sun when the length of the shadow of a vertical pole is equal to its height?
(a) 30°
(b) 60^{0}
(c) 45^{0}
(d) none of these
6. From a point on the ground, 20 m away from the foot of a vertical tower, the angle of elevation of the top of the tower is 60^{0}, what is the height of the tower?
(a) $10 \sqrt{3} \mathrm{~m}$
(b) $30 \sqrt{3} \mathrm{~m}$
(c) $20 \sqrt{3} \mathrm{~m}$
(d) none of these
7. If the angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary, find the height of the tower.
(a) 10 m
(b) 6 m
(c) 8 m
(d) none of these
8. In the below fig. what are the angles of depression from the observing positions D and E of the object A?
(a) $30^{0}, 45^{0}$
(b) $60^{\circ}, 45^{\circ}$
(c) $45^{\circ}, 60^{\circ}$
(d) none of these

9. The ratio of the length of a rod and its shadow is $1: \sqrt{3}$. The angle of elevation of the sun is
(a) 30°
(b) 60°
(c) 45^{0}
(d) none of these
10. If the angle of elevation of a tower from a distance of 100 m from its foot is 60°, then the height of the tower is
(a) $100 \sqrt{3} \mathrm{~m}$
(b) $\frac{200}{\sqrt{3}} \mathrm{~m}$
(c) $50 \sqrt{3} \mathrm{~m}$
(d) $\frac{100}{\sqrt{3}} \mathrm{~m}$
11. If the altitude of the sun is at 60°, then the height of the vertical tower that will cast a shadow of length 30 m is
(a) $30 \sqrt{3} \mathrm{~m}$
(b) 15 m
(c) $\frac{30}{\sqrt{3}} \mathrm{~m}$
(d) $15 \sqrt{2} \mathrm{~m}$
12. A tower subtends an angle of 30° at a point on the same level as its foot. At a second point ' h ' metres above the first, the depression of the foot of the tower is 60°. The height of the tower is
(a) $\frac{h}{2} \mathrm{~m}$
(b) $\frac{h}{3} \mathrm{~m}$
(c) $\sqrt{3} h \mathrm{~m}$
(d) $\frac{h}{\sqrt{3}} \mathrm{~m}$
13. A tower is $100 \sqrt{3} \mathrm{~m}$ high. Find the angle of elevation if its top from a point 100 m away from its foot.
(a) 30^{0}
(b) 60^{0}
(c) 45^{0}
(d) none of these
14. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. Find the height of the tower.
(a) $10 \sqrt{3} \mathrm{~m}$
(b) $30 \sqrt{3} \mathrm{~m}$
(c) $20 \sqrt{3} \mathrm{~m}$
(d) none of these
15. The string of a kite is 100 m long and it makes an angle of 60° with the horizontal. Find the height of the kite, assuming that there is no slack in the string.
(a) $100 \sqrt{3} \mathrm{~m}$
(b) $\frac{200}{\sqrt{3}} \mathrm{~m}$
(c) $50 \sqrt{3} \mathrm{~m}$
(d) $\frac{100}{\sqrt{3}} \mathrm{~m}$
16. A kite is flying at a height of 60 m above the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.
(a) $40 \sqrt{3} \mathrm{~m}$
(b) $30 \sqrt{3} \mathrm{~m}$
(c) $20 \sqrt{3} \mathrm{~m}$
(d) none of these
17. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole if the angle made by the rope with the ground level is 30°.
(a) 10 m
(b) 30 m
(c) 20 m
(d) none of these
18. A tower is 50 m high, Its shadow ix ' x ' metres shorter when the sun's altitude is 45° than when it is 30°. Find the value of ' x '
(a) $100 \sqrt{3} \mathrm{~m}$
(b) $\frac{200}{\sqrt{3}} \mathrm{~m}$
(c) $50 \sqrt{3} \mathrm{~m}$
(d) none of these
19. Find the angular elevation of the sun when the shadow of a 10 m long pole is $10 \sqrt{3} \mathrm{~m}$.
(a) 30°
(b) 60°
(c) 45^{0}
(d) none of these
20. A vertical pole stands on the level ground. From a point on the ground 25 m away from the foot of the pole, the angle of elevation of its top is found to be 60°. Find the height of the pole.
(a) $25 \sqrt{3} \mathrm{~m}$
(b) $\frac{25}{\sqrt{3}} \mathrm{~m}$
(c) $50 \sqrt{3} \mathrm{~m}$
(d) none of these
21. A kite is flying at a height of 75 m above the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.
(a) $40 \sqrt{3} \mathrm{~m}$
(b) $30 \sqrt{3} \mathrm{~m}$
(c) $50 \sqrt{3} \mathrm{~m}$
(d) none of these
22. The angle of elevation of the tope of a tree from a point A on the ground is 60°. On walking 20 m away from its base, to a point B, the angle of elevation changes to 30°. Find the height of the tree.
(a) $10 \sqrt{3} \mathrm{~m}$
(b) $30 \sqrt{3} \mathrm{~m}$
(c) $20 \sqrt{3} \mathrm{~m}$
(d) none of these
23. A 1.5 m tall boy stands at a distance of 2 m from lamp post and casts a shadow of 4.5 m on the ground. Find the height of the lamp post.
(a) 3 m
(b) 2.5 m
(c) 5 m
(d) none of these
24. The height of the tower is 100 m . When the angle of elevation of the sun changes from 30° to 45°, the shadow of the tower becomes ' x ' meters less. The value of ' x ' is
(a) $100 \sqrt{3} \mathrm{~m}$
(b) 100 m
(c) $100(\sqrt{3}-1) \mathrm{m}$
(d) $\frac{100}{\sqrt{3}}$
25. The tops of two poles of height 20 m and 14 m are connected by a wire. If the wire makes an angle of 30° with horizontal, then the length of the wire is
(a) 12 m
(b) 10 m
(c) 8 m
(d) 6 m
26. If the angles of elevation of a tower from two points distant a and $b(a>b)$ from its foot and in the same straight line from it are 30° and 60°, then the height of the tower is
(a) $\sqrt{a+b} \mathrm{~m}$
(b) $\sqrt{a-b} \mathrm{~m}$
(c) $\sqrt{a b} \mathrm{~m}$
(d) $\sqrt{\frac{a}{b}} \mathrm{~m}$
27. The angles of elevation of the top of a tower from two points at a distance of 'a' m and ' b ' m from the base of the tower and in the same straight line with it are complementary, then the height of the tower is
(a) $\sqrt{a+b} \mathrm{~m}$
(b) $\sqrt{a-b} \mathrm{~m}$
(c) $\sqrt{a b} \mathrm{~m}$
(d) $\sqrt{\frac{a}{b}} \mathrm{~m}$
28. From the top of a cliff 25 m high the angle of elevation of a tower is found to be equal to the angle of depression of the foot of the tower. The height of the tower is
(a) 25 m
(b) 50 m
(c) 75 m
(d) 100 m
29. If the angle of elevation of a cloud from a point 200 m above a lake is 30° and the angle of depression of its reflection in the lake is 60°, then the height of the cloud above the lake is
(a) 200 m
(b) 500 m
(c) 30 m
(d) 400 m
30. The angle of elevation of a cloud from a point ' h ' meter above a lake is ' α '. The angle of depression of its reflection in the lake is 45°. The height of the cloud is
(a) h. $\tan \alpha$
(b) $\frac{h(1+\tan \alpha)}{(1-\tan \alpha)}$
(c) $\frac{h(1-\tan \alpha)}{(1+\tan \alpha)}$
(d) none of these
