1. Find the remainder when $x^{3}-7 x+4$ is divided by $x-1, x+2$ and $2 x+1$.
2. Find the remainder when $f(x)=x^{3}-6 x^{2}+2 x-4$ is divided by $1-3 x$.
3. If the polynomial $f(\mathrm{x})=2 \mathrm{x}^{3}-\mathrm{ax}^{2}+4 \mathrm{x}-1$, leaves a remainder -37 when divided by $x+2$, find the value of a.
4. The polynomial $\mathrm{ax}^{3}+3 \mathrm{x}^{2}-13$ and $2 \mathrm{x}^{3}-5 \mathrm{x}+\mathrm{a}$ are divided by $\mathrm{x}+2$. If the remainder is same in each case, find the value of a
5. Use factor theorem to determine whether
a. $x-1$ is a factor of $f(x)=2 x^{3}+5 x^{2}-3 x-4$
b. $2 \mathrm{x}-3$ is a factor of $f(\mathrm{x})=2 \mathrm{x}^{3}-9 \mathrm{x}^{2}+\mathrm{x}+12$.
6. Find the value of a if $x+a$ is a factor of polynomial $x^{3}+a x^{2}-2 x+a+4$.
7. If $x^{3}+a x^{2}-x+b$ has $(x-2)$ as a factor and leaves a remainder 3 when divided by ($x-3$), find a and b.
8. Factorize $x^{3}+13 x^{3}+31 x-45$, given that $x+9$ is a factor of it.
9. Factorize $x^{3}-7 x+6$, using factor theorem.
10. If the expression $x^{3}+3 x^{2}+4 x+p$ has $(x+6)$ as a factor, find P.
11. If $(x+a)$ be the HCF of $x^{2}+m x+n$ and $x^{2}+r x+s$, then show that $a=\frac{n-s}{m-r}$
12. What number must be added to $3 x^{3}+x^{2}-22 x+9$, so that result becomes exactly divisible by $\mathrm{x}+3$.

REMAINDER
 AND
 FACTOR THEOREMS

MATHEMATICS

10TH ICSE

1. Find the remainder when $x^{2}-8 x+4$ is divided by $2 x+1$.
2. Find the value of 'a' if the division of $a x^{3}+9 x^{2}+4 x-10$ by $x+3$ leaves a remainder of 5 .
3. When the polynomial $2 x^{3}-k x^{2}+(5 k-3) x-8$ is divided by $x-2$, the remainder is 14 . Find the value of ' k '.
4. The polynomial $3 x^{3}-a x^{2}+5 x-13$ and $(a+1) x^{2}-7 x+5$ leave the same remainder when divided by $x-3$. Find the value of ' a '.
5. When $\mathrm{f}(\mathrm{x})=x^{3}+a x^{2}-b x-8$ is divided by $\mathrm{x}-2$, the remainder is zero and when divided by $\mathrm{x}+1$, the remainder is -30 . Find the values of 'a' and ' b '.
6. What number should be added to $2 x^{3}-3 x^{2}+x$ so that when the resulting polynomial is divided by $x-2$, the remainder is 3 ?
7. Determine whether $\mathrm{x}-1$ is a factor of $x^{6}-x^{5}+x^{4}+x^{3}-x^{2}-x+1$ or not ?
8. If $x-2$ is a factor of $x^{2}-7 x+2 a$, find the value of a.
9. Find the value of ' k^{\prime} ' $\mathrm{f}(\mathrm{x}-2)$ is a factor of $x^{3}+2 x^{2}-k x+10$. Hence, determine whether $(\mathrm{x}$ +5) is also a factor.
10. Given that $\mathrm{x}+2$ and $\mathrm{x}-3$ are factors of $x^{3}+a x+b$; calculate the values of a and b .
11. Polynomial $x^{3}-a x^{2}+b x-6$ leaves remainder -8 when divided by $x-1$ and $x-2$ is a factor of it. Find the values of 'a' and 'b'.
12. Using the Factor Theorem, show that $(x-2)$ is a factor of $3 x^{2}-5 x-2$. Hence, factorise the given expression.
13. Show that $2 \mathrm{x}+7$ is a factor of $2 x^{3}+5 x^{2}-11 x-14$. Hence, factorise the given expression completely, using the factor theorem.
14. Using the Remainder Theorem, factorise the expression $2 x^{3}+x^{2}-2 x-1$ completely.
15. Find the values of ' a ' and ' b ' so that the polynomial $x^{3}+a x^{2}+b x-45$ has $(x-1)$ and $(x+5)$ as its factors. For the values of ' a ' and ' b ', as obtained above, factorise the given polynomial completely.
16. If $(x-2)$ is a factor of $2 x^{3}-x^{2}-p x-2$
i. Find the value of p.
ii. With the value of p, factorise the above expression completely.
