1. If in triangle ABC and $\mathrm{DEF}, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar when
(a) $\angle B=\angle E$
(b) $\angle A=\angle D$
(c) $\angle B=\angle D$
(d) $\angle A=\angle F$
2. It is given that $\triangle A B C \sim \triangle P Q R$ with $\frac{B C}{Q R}=\frac{1}{3}$, then $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}$ is equal to
(a) 9
(b) 3
(c) $\frac{1}{3}$
(d) $\frac{1}{9}$
3. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$ and $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{AB}=9 \mathrm{~cm}$. $\mathrm{AC}=13.5 \mathrm{~cm}$ then the value of $E C$ is
(a) 6 cm
(b) 7.5 cm
(c) 9 cm
(d) none of these
4. In figure $\mathrm{DE} \| \mathrm{BC}$ then the value of AD is

(a) 2 cm
(b) 2.4 cm
(c) 3 cm
(d) none of the above
5. ABC and BDE are two equilateral triangles such that $B D=\frac{2}{3} B C$. The ratio of the areas of triangles ABC and BDE are
(a) $2: 3$
(b) $3: 2$
(c) $4: 9$
(d) $9: 4$
6. A ladder is placed against a wall such that its foot is at distance of 2.5 m from the wall and its top reaches a window 6 m above the ground. The length of the ladder is
(a) 6.5 m
(b) 7.5 m
(c) 8.5 m
(d) 9.5 m
7. If the corresponding sides of two similar triangles are in the ratio $4: 9$, then the areas of these triangles are in the ratio is
(a) $2: 3$
(b) $3: 2$
(c) $81: 16$
(d) $16: 81$
8. If $\triangle A B C \sim \triangle P Q R, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{QR}=6 \mathrm{~cm}$, the ratio of the areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ is
(a) $8: 6$
(b) $6: 8$
(c) $64: 36$
(d) $9: 16$
9. If $\triangle A B C \sim \triangle P Q R$, area of $\triangle \mathrm{ABC}=81 \mathrm{~cm}^{2}$, area of $\triangle \mathrm{PQR}=144 \mathrm{~cm}^{2}$ and $\mathrm{QR}=6 \mathrm{~cm}$, then length of $B C$ is
(a) 4 cm
(b) 4.5 cm
(c) 9 cm
(d) 12 cm
10. Sides of triangles are given below. Which of these is a right triangle?
(a) $7 \mathrm{~cm}, 5 \mathrm{~cm}, 24 \mathrm{~cm}$
(b) $34 \mathrm{~cm}, 30 \mathrm{~cm}, 16 \mathrm{~cm}$
(c) $4 \mathrm{~cm}, 3 \mathrm{~cm}, 7 \mathrm{~cm}$
(d) $8 \mathrm{~cm}, 12 \mathrm{~cm}, 14 \mathrm{~cm}$
11. If a ladder 10 m long reaches a window 8 m above the ground, then the distance of the foot of the ladder from the base of the wall is
(a) 18 m (b) $8 \mathrm{~m}(\mathrm{c}) 6 \mathrm{~m}(\mathrm{~d}) 4 \mathrm{~m}$
12. A girl walks 200 towards East and the she walks 150 m towards North. The distance of the girl from the starting point is
(a) 350 m (b) 250 m
(c) 300 m
(d) 225 m
13. In the given figure, if $D E \| B C$, then x equals
(a) 6 cm
(b) 10 cm
(c) 8 cm
(d) 12.5 cm
14. All \qquad triangles are similar.
(a) isosceles
(b) equilateral
(c) scalene
(d) right angled
15. All circles are \qquad
(a) congruent
(b) similar
(c) not similar
(d) none of these
(c)
16. All squares are \qquad $-$
(a) congruent
(b) similar
(c) not similar
(d) none of these
17. In the given fig $\mathrm{DE} \| \mathrm{BC}$ then the value of EC is
(a) 1 cm
(b) 2 cm
(c) 3 cm
(d) 4 cm
18. In the given below figure, the value of $\angle P$ is

(a) 60°
(b) 80°
(c) 40°
(d) 100^{0}

19. A girl of height 90 cm is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the ground, then the length of her shadow after 4 seconds.
(a) 1.2 m
(b) 1.6 m
(c) 2 m
(d) none of these
20. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.
(a) 42 m
(b) 48 m
(c) 54 m
(d) none of these
21. $\triangle A B C \sim \triangle D E F$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $E F=15.4 \mathrm{~cm}$, the value of $B C$ is.
(a) 11.2 cm
(b) 15.4 cm
(c) 6.4 cm
(d) none of these
22. $A B C$ and $B D E$ are two equilateral triangles such that D is the midpoint of $B C$. Ratio of the areas of triangles ABC and BDE is
(a) $2: 1$
(b) $1: 2$
(c) $4: 1$
(d) $1: 4$
23. Areas of two similar triangles are in the ratio $4: 9$. Sides of these triangles are in the ratio
(a) $2: 3$
(b) $4: 9$
(c) $81: 16$
(d) $16: 81$
24. A vertical pole of length 20 m casts a shadow 10 m long on the ground and at the same time a tower casts a shadow 50 m long, then the height of the tower.
(a) 100 m
(b) 120 m
(c) 25 m
(d) none of these
25. The areas of two similar triangles are in the ratio $4: 9$. The corresponding sides of these triangles are in the ratio
(a) $2: 3$
(b) $4: 9$
(c) $81: 16$
(d) $16: 81$
26. The areas of two similar triangles $\triangle A B C$ and $\triangle D E F$ are $144 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$, respectively. If the longest side of larger $\triangle A B C$ be 36 cm , then the longest side of the similar triangle $\triangle D E F$ is
(a) 20 cm
(b) 26 cm
(c) 27 cm
(d) 30 cm
27. The areas of two similar triangles are in respectively $9 \mathrm{~cm}^{2}$ and $16 \mathrm{~cm}^{2}$. The ratio of their corresponding sides is
(a) $2: 3$
(b) $3: 4$
(c) $4: 3$
(d) $4: 5$
28. Two isosceles triangles have equal angles and their areas are in the ratio $16: 25$. The ratio of their corresponding heights is
(a) $3: 2$
(b) $5: 4$
(c) $5: 7$
(d) $4: 5$
29. If $\triangle A B C$ and $\triangle D E F$ are similar such that $2 \mathrm{AB}=\mathrm{DE}$ and $\mathrm{BC}=8 \mathrm{~cm}$, then $\mathrm{EF}=$
(a) 16 cm
(b) 112 cm
(c) 8 cm
(d) 4 cm
30. XY is drawn parallel to the base BC of a $\triangle A B C$ cutting AB at X and AC at Y . If $\mathrm{AB}=4 \mathrm{BX}$ and $\mathrm{YC}=2 \mathrm{~cm}$, then $\mathrm{AY}=$
(a) 2 cm
(b) 6 cm
(c) 8 cm
(d) 4 cm
31. Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12 m , the distance between their tops is
(a) 14 cm
(b) 12 cm
(c) 13 cm
(d) 11 cm
32. If $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are midpoints of sides BC, CA and AB respectively of $\triangle A B C$, then the ratio of the areas of triangles DEF and ABC is
(a) $2: 3$
(b) $1: 4$
(c) $1: 2$
(d) $4: 5$
33. If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}=\frac{2}{5}$, then $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=$
(a) $2: 5$
(b) $4: 25$
(c) $4: 15$
(d) $8: 125$
34. In triangles ABC and $\mathrm{DEF}, \angle \mathrm{A}=\angle \mathrm{E}=40^{\circ}$, $\mathrm{AB}: \mathrm{ED}=\mathrm{AC}: \mathrm{EF}$ and $\angle \mathrm{F}=65^{\circ}$, then $\angle \mathrm{B}=$
(a) 35^{0}
(b) 65°
(c) 75^{0}
(d) 85^{0}
35. If ABC and DEF are similar triangles such that $\angle \mathrm{A}=47^{\circ}$ and $\angle \mathrm{E}=83^{\circ}$, then $\angle \mathrm{C}=$
(a) 50°
(b) 60°
(c) 70°
(d) 80°
36. State whether the following pairs of polygons are similar or not:

37. In triangle $\mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$ and $\frac{A D}{D B}=\frac{3}{5}$. If $\mathrm{AC}=4.8 \mathrm{~cm}$, find AE .
38. A girl of height 90 cm is walking away from the base of a lamp post at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.
39. Diagonals of a trapezium $A B C D$ with $A B \| C D$ intersects at O. If $A B=2 C D$, find the ratio of areas of triangles AOB and COD.
40. Prove that the areas of two similar triangles are in the ratio of squares of their corresponding altitudes.
41. In the below figure, the line segment $X Y$ is parallel to side $A C$ of $\triangle A B C$ and it divides the triangle into two equal parts of equal areas. Find the ratio $\frac{A X}{A B}$.

42. In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle. Prove it.
43. E is a point on the side AD produced of $\mathrm{a} \| \mathrm{gm} \mathrm{ABCD}$ and BE intersects CD at F . Show that $\triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}$.
44. Complete the sentence: Two polygons of the same number of sides are similar if.......
45. In $\triangle A B C, A D \perp B C$. Prove that $A B^{2}-B D^{2}=A C^{2}-C D^{2}$.
46. AD is a median of $\triangle \mathrm{ABC}$. The bisector of $\angle \mathrm{ADB}$ and $\angle \mathrm{ADC}$ meet AB and AC in E and F respectively. Prove that $\mathrm{EF} \| \mathrm{BC}$.
47. State and prove the Basic Proportionality theorem. In the below figure, if $\mathrm{LM} \| \mathrm{CB}$ and $\mathrm{LN} \|$ CD, prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

48. In the below figure, $\mathrm{DE} \| \mathrm{BC}$, find EC

49. In the above right sided figure, $\mathrm{DE} \| \mathrm{BC}$, find AD .
50. In given figure $\frac{A D}{D B}=\frac{A E}{E C}$ and $\angle \mathrm{AED}=\angle \mathrm{ABC}$. Show that $\mathrm{AB}=\mathrm{AC}$
51. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$, such that $\operatorname{ar}(\triangle \mathrm{ABC})=64 \mathrm{~cm}^{2}$ and $\operatorname{ar}(\triangle \mathrm{DEF})=121 \mathrm{~cm} 2$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC.
52. ABC and BDE are two equilateral triangles such that D is the midpoint of BC . What is the ratio of the areas of triangles $A B C$ and $B D E$.
53. Sides of 2 similar triangles are in the ratio $4: 9$. What is the ratio areas of these triangles.
54. Sides of a triangle are $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$. Will it form a right triangle? Why or why not?
55. Find $\angle \mathrm{B}$ in $\triangle \mathrm{ABC}$, if $\mathrm{AB}=6 \sqrt{3} \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$.
56. Prove that "If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio".
57. Prove that "If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side."
58. If a line intersects sides AB and AC of a $\triangle A B C$ at D and E respectively and is parallel to BC , prove that $\frac{A D}{A B}=\frac{A E}{A C}$
59. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and its diagonals intersect each other at the point O . Show that $\frac{A O}{B O}=\frac{C O}{D O}$
60. Prove that "If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar.
61. Prove that "If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.
62. Prove that "If in two triangles, sides of one triangle are proportional to (i.e., in the same ratio of) the sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similar.
63. D is a point on the side BC of a triangle ABC such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$. Show that $C A^{2}=C B . C D$.
64. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and QR and median PM of $\triangle \mathrm{PQR}$. Show that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
65. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median $P M$ of another triangle $P Q R$. Show that $\triangle A B C \sim \triangle P Q R$.
66. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \sim \triangle P Q R$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$
67. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.
68. Prove that "The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides."
69. If the areas of two similar triangles are equal, prove that they are congruent.
70. D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of $\triangle \mathrm{DEF}$ and $\triangle \mathrm{ABC}$.
71. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
72. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
73. Prove that "If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other."
74. Prove that "In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
75. O is any point inside a rectangle ABCD . Prove that $\quad \mathrm{OB}^{2}+\mathrm{OD}^{2}=\mathrm{OA}^{2}+\mathrm{OC}^{2}$.
76. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
