1. If $6: x:: 3: 15$, find x.
2. Find the fourth proportional to $3,5,27$.
3. (i)Find the third proportional to 5,10 . (ii) Find the mean proportional between 3 and 75 .
4. If $x, 6,18, y$ are in continued proportion, find x and y.
5. Find the numbers such that the mean proportional between them is 24 , and the third proportional to them is 192.
6. What number must be added to each of the four numbers $10,18,22$ and 38 to make them in proportion?
7. If $x: y:: y: z$, prove that $x: z=x^{2}: y^{2}$.
8. If y is the mean proportional between x and z, prove that $x y+y z$ is the mean proportional between $\mathrm{x}^{2}+\mathrm{y}^{2}$ and $\mathrm{y}^{2}+\mathrm{z}^{2}$.
9. If q is the mean proportional between p and r , prove that $\left(\frac{p q+q r+r p}{p+q+r}\right)^{3}=\mathrm{pqr}$.
10. If $a: b=c: d$, show that $(3 a-7 b):(3 a-7 b)::(3 c+7 d):(3 c-7 d)$.
11. If $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$, show that $\frac{2 a+3 b}{2 c+3 d}=\frac{2 a-3 b}{2 c-3 d}$.
12. If $(4 a+5 b)(4 c=5 d)=(4 a-5 b)(4 c+5 d)$, prove that $\frac{a}{b}=\frac{c}{d}$.
13. If $\mathrm{a}=\frac{4 x y}{x+y}$, find the value of $\frac{a+2 x}{a-2 x}+\frac{a+2 y}{a-2 y}$ by using the properties of proportion.
14. If $\frac{2 a+2 b-3 c-3 d}{2 a-2 b-3 c+3 d}=\frac{a+b}{a-d-4 c+4 d}$, then prove that $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$.
15. Solve the following equations for x , using properties of proportion.
a. $\frac{\sqrt{5}+\sqrt{5-x}}{\sqrt{5}-\sqrt{5-x}}=3$
b. $\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}=\frac{a}{b}$
16. Solve $\frac{2 x+\sqrt{4 x^{2}-1}}{2 x-\sqrt{4 x^{2}-1}}=4$ for x , using the properties of proportion.
17. If $\frac{\sqrt{2 a+1}+\sqrt{2 a-1}}{\sqrt{2 a+1}-\sqrt{2 a-1}}$, show that $\mathrm{x}^{2}-4 \mathrm{ax}+1=0$.
18. Solve for x , using the properties of proportions: $\frac{1+x+x^{2}}{1-x+x^{2}}=\frac{62(1+x)}{63(1-x)}$
19. If $x=\sqrt[{\frac{3}{m+1}+\sqrt[3]{m 1}}]{\sqrt[3]{m+1}+\sqrt[3]{m 1}}$, show that $x^{3}-3 m x^{2}+3 x-m=0$.
20. If $\frac{a}{b}=\frac{c}{d^{\prime}}$ show that
a. $\frac{a+b}{c+d}=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}}$
b. $\left(a^{4}+c^{4}\right):\left(b^{4}+d^{4}\right):: a^{2} c^{2}: b^{2} d^{2}$.
21. If $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$, prove that
a. $\frac{a^{2}+c^{2}}{a b^{2}+c d^{2}}=\frac{a b+c d}{b^{2}+d^{2}}$.
b. $\frac{\sqrt{a^{4}+c^{4}}}{\sqrt{b^{4}+d^{4}}}=\frac{p a^{2}+q c^{2}}{p b^{2}+q d^{2}}$.
22. If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}$, show that $\frac{a^{3}+2 c^{2} e-3 a e^{2} f}{b^{4}+2 d^{2} f-3 b f^{3}}=\frac{a c e}{b d f}$.
23. If $\frac{x+y}{a x+b y}=\frac{y+z}{a y+b z}=\frac{z+x}{a z+b x}$ a $+\mathrm{y}+\mathrm{z} \neq 0$, show that each ratio is equal to $\frac{2}{a+b}$. 24. If $\frac{b+c-a}{y+z-x}=\frac{c+a-b}{z+x-y}=\frac{a+b+c}{x+y-z}$, then each ratio is equal to $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}$.
24. If $\frac{b y+c z}{b^{2}+c^{2}}=\frac{c z+a x}{c^{2}+a^{2}}=\frac{a x+b y}{a^{2}+b^{2}}$, then each ratio is equal to $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$.
25. If a, b, c, are in continued proportion, prove that
a. $(a+b):(b+c):: a^{2}(b-c): b^{2}(a-b)$.
26. If $\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{d}$ are in continued proportion, prove that
a. $a: d=(a-b)^{3}:(b-c)^{3}$
b. $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)(a b+b c+c d)^{2}$
c. $\sqrt{(a+b+c)(b+c+d)}=\sqrt{a b}+\sqrt{b c}+\sqrt{c d}$

MATHEMATICS

DAILY PRACTICE PAPER

1. If $(3 a+2 b):(5 a+3 b)=18: 29$, find $a: b$.

If $x: y=2: 3$, find the value of $3 x+2 y: 2 x+5 y$.
2. If $a: b=5: 3$, find $(5 a+8 b):(6 a-7 b$.
3. Two numbers are in the ratio $3: 5$. If 8 is added to each number, the ratio becomes $2: 3$. Find the numbers.
4. (i) What quantity must be added to each term of the ratio $8: 15$ so that it becomes equal to $3: 5$?
(ii) What quantity must be subtracted from each term of the ratio $a: b$ so that it becomes $c: d$?
5. The work done by $(x-3)$ men in $(2 x+1)$ days and the work done by $(2 x+1)$ men in $(x+4)$ days are in the ratio $3: 10$. Find the value of X.
6. When the fare of a certain journey by an airliner was increased in the ratio $5: 7$ the cost of the ticket for the journey became 1, 421. Find the increase in the fare.
7. In a regiment, the ratio of number of officers to the number of soldiers was $3: 31$ before a battle. In the battle 6 officers and 22 soldiers were killed. The ratio between the number of officers and the number of soldiers now is $1: 13$. Find the number of officers and soldiers in the regiment before the battle.
8. If $\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$; show that each given ratio is equal to -1 .
9. If $\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c} \neq 0$; show that each given ratio is equal to $\frac{1}{2}$.
10. Find the compound ratio of:
i. $\quad 3 \mathrm{a}: 2 \mathrm{~b}, 2 \mathrm{~m}: \mathrm{n}$ and $4 \mathrm{x}: 3 \mathrm{y}$
ii. $\quad \mathrm{a}-\mathrm{b}: \mathrm{a}+\mathrm{b}, a+b^{2}: a^{2}+b^{2}$ and $a^{4}-b^{4}:\left(a^{2}-b^{2}\right)^{2}$.
11. Find the ratio compounded of the duplicate ratio of $5: 6$, the reciprocal ratio of $25: 42$ and the subtriplicate ratio $216: 343$.
12. Quantities $a, 2,10$ and b are in continued proportion; find the values of a and b.
13. Find (i) the fourth proportional to 3,6 and $4 \cdot 5$.
(ii) the mean proportional between $6 \cdot 25$ and $0 \cdot 16$.
(iii) the third proportional to 1.2 and $1 \cdot 8$.
14. What number should be subtracted from each of the numbers $23,30,57$ and 78 ; so that the remainders are in proportion?
15.If $\left(a^{2}+c^{2}\right),(a b+c d)$ and $\left(b^{2}+d^{2}\right)$ are in continued proportion; prove that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in proportion.
16. If $\mathrm{p}: \mathrm{q}:: \mathrm{q}: \mathrm{r}$, prove that $\mathrm{p}: \mathrm{r}=\mathrm{p}^{2}: \mathrm{q}^{2}$.
17. If $\mathrm{a} \neq \mathrm{b}$ and $\mathrm{a}: \mathrm{b}$ is the duplicate ratio of $\mathrm{a}+\mathrm{c}$ and $\mathrm{b}+\mathrm{c}$, prove that ${ }^{\prime} \mathrm{c}^{\prime}$ is the mean proportional between 'a' and ' b '.
18. If $\mathrm{a}+\mathrm{c}=\mathrm{mb}$ and $\frac{1}{b}+\frac{1}{d}=\frac{m}{c}$, prove that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in proportion.
19.If q is the mean proportional between p and r , prove that : $p^{2}-q^{2}+r^{2}=q^{4}\left[\frac{1}{p^{2}}-\frac{1}{q^{2}}+\frac{1}{r^{2}}\right]$. 20.If a, b, c and d are in proportion, prove that :
i. $\quad \frac{a-b}{c-d}=\sqrt{\frac{3 a^{2}+8 b^{2}}{3 c^{2}+8 d^{2}}}$
ii. $\quad \frac{5 a^{2}+12 c^{2}}{5 b^{2}+12 d^{2}}=\sqrt{\frac{3 a^{4}-7 c^{4}}{3 b^{4}-7 d^{4}}}$
21.6 is the mean proportion between two numbers x and y and 48 is third proportion to x and y . Find the numbers.
22.If $\frac{8 x+13 y}{8 x-13 y}=\frac{9}{7}$, find $\mathrm{x}: \mathrm{y}$.
23.If $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$, show that : $3 \mathrm{a}+2 \mathrm{~b}: 3 \mathrm{a}-2 \mathrm{~b}=3 \mathrm{c}+2 \mathrm{~d}: 3 \mathrm{c}-2 \mathrm{~d}$.
24.If $\frac{8 a-5 b}{8 c-5 d}=\frac{8 a+5 b}{8 c+5 d}$, prove that $\frac{a}{b}=\frac{c}{d}$.
25.If $\mathrm{p}=\frac{4 x y}{x+y}$, find the value of $\frac{p+2 x}{p-2 x}+\frac{p+2 y}{p-2 y}$.
26.If a : b = c: d; prove that:

$$
\left(a^{2}+a c+c^{2}\right):\left(a^{2}-a c+c^{2}\right)=\left(b^{2}+b d+d^{2}\right):\left(b^{2}-b d+d^{2}\right)
$$

27. If x, y and z are in continued proportion, prove that:

$$
x^{2}-y^{2}: x^{2}+y^{2}=x-z: x+z .
$$

28. Using the properties of proportion, solve the following equation for
29. $\mathrm{x}: \frac{x^{3}+3 x}{3 x^{2}+1}=\frac{341}{91}$
30.If $\mathrm{x}=\frac{\sqrt{3 a+2 b}}{\sqrt{3 a+2 b}} \frac{\sqrt{3 a-2 b}}{\sqrt{3 a-2 b}}$, prove that: $b x^{2}-3 a x+b+0$.
