1. The roots of the equation $x^{2}+7 x+10=0$ are
(a) 2 and 5
(b) -2 and 5
(c) -2 and -5
(d) 2 and -5
2. If α, β are the roots of the quadratic equation $\mathrm{x}^{2}+\mathrm{x}+1=0$, then $\frac{1}{\alpha}+\frac{1}{\beta}$
(a) 0
(b) 1
(c) -1
(d) none of these
3. If the equation $x^{2}+4 x+k=0$ has real and distinct roots then
(a) $\mathrm{k}<4$
(b) $\mathrm{k}>4$
(c) $\mathrm{k} \leq 4$
(d) $\mathrm{k} \geq 4$
4. If the equation $x^{2}-a x+1=0$ has two distinct roots then
(a) $|\mathrm{a}|=2$
(b) \mid a $\mid<2$
(c) $|\mathrm{a}|>2$
(d) none of these
5. If the equation $9 x^{2}+6 k x+4=0$ has equal roots then the roots are both equal to
(a) $\pm \frac{2}{3}$
(b) $\pm \frac{3}{2}$
(c) 0
(d) ± 3
6. If the equation $\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c) x+b^{2}+c^{2}=0$ has equal roots then
(a) $2 b=a+c$
(b) $b^{2}=a c$
(c) $b=\frac{2 a c}{a+c}$
(d) $b=a c$
7. If the equation $x^{2}-b x+1=0$ has two distinct roots then
(a) $-3<b<3$
(b) $-2<$ b <2
(c) $\mathrm{b}>2$
(d) $\mathrm{b}<-2$
8. If $x=1$ is a common root of the equations $a x^{2}+a x+3=0$ and $x^{2}+x+b=0$ then $a b=$
(a) 6
(b) 3
(c) -3
(d) $\frac{7}{2}$
9. If p and q are the roots of the equation $x^{2}-p x+q=0$, then
(a) $p=1, q=-2$
(b) $p=-2, q=0$
(c) $b=0, q=1$
(d) $\mathrm{p}=-2, \mathrm{q}=1$
10. If the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ has equal roots then $\mathrm{c}=$
(a) $\frac{-b}{2 a}$
(b) $\frac{b}{2 a}$
(c) $\frac{-b^{2}}{4 a}$
(d) $\frac{b^{2}}{4 a}$
11. If the equation $a x^{2}+2 x+a=0$ has two distinct roots if
(a) $\mathrm{a}= \pm 1$
(b) $a=0$
(c) $\mathrm{a}=0,1$
(d) $a=-1,0$
12. The possible value of k for which the equation $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0$ will both have real roots, is
(a) 4
(b) 8
(c) 12
(d) 16
13. The value of $\sqrt{6+\sqrt{6+\sqrt{6+\ldots .}}}$ is
(a) 4
(b) 3
(c) -2
(d) $\frac{7}{2}$
14. If 2 is the root of the equation $x^{2}+b x+12=0$ and the equation $x^{2}+b x+q=0$ has equal roots then $\mathrm{q}=$
(a) 8
(b) 16
(c) -8
(d) -16
15. If the equation $\left(a^{2}+b^{2}\right) x^{2}-2(a c+b d) x+c^{2}+d^{2}=0$ has equal roots then
(a) $\mathrm{ab}=\mathrm{cd}$
(b) $\mathrm{ad}=\mathrm{bc}$
(c) $\mathrm{ad}=\sqrt{b c}$
(d) $\mathrm{ab}=\sqrt{c d}$
16. If a and b can take values $1,2,3,4$. Then the number of the equations of the form $a x^{2}+b x+c=$ 0 having real roots is
(a) 6
(b) 7
(c) 10
(d) 12
17. The number of quadratic equations having real roots and which do not change by squaring their roots is
(a) 4
(b) 3
(c) 2
(d) 1
18. If one of the roots of the quadratic equation $\left(k^{2}+4\right) x^{2}+13 x+4 k$ is reciprocal of the other then k $=$
(a) 2
(b) 1
(c) -1
(d) -2
19. If α, β are the roots of the quadratic equation $4 \mathrm{x}^{2}+3 \mathrm{x}+7=0$, then $\frac{1}{\alpha}+\frac{1}{\beta}$
(a) $\frac{7}{3}$
(b) $\frac{-7}{3}$
(c) $\frac{3}{7}$
(d) $\frac{-3}{7}$
20. If α, β are the roots of the quadratic equation $\mathrm{x}^{2}-\mathrm{p}(\mathrm{x}+1)-\mathrm{c}=0$, then $(\alpha+1)(\beta+1)=$
(a) $\mathrm{c}-1$
(b) $1-\mathrm{c}$
(c) c
(d) $1+c$
21. Find the values of k for which the quadratic equation $2 x^{2}+k x+3=0$ has real equal roots.
(a) $\pm 2 \sqrt{6}$
(b) $2 \sqrt{6}$
(c) 0
(d) ± 2
22. Find the values of k for which the quadratic equation $k x(x-3)+9=0$ has real equal roots.
(a) $\mathrm{k}=0$ or $\mathrm{k}=4$
(b) $\mathrm{k}=1$ or $\mathrm{k}=4$
(c) $\mathrm{k}=-3$ or $\mathrm{k}=3$
(d) $\mathrm{k}=-4$ or $\mathrm{k}=4$
23. Find the values of k for which the quadratic equation $4 x^{2}-3 k x+1=0$ has real and equal roots.
(a) $\pm \frac{4}{3}$
(b) $\pm \frac{2}{3}$
(c) ± 2
(d) none of these
24. Find the values of k for which the quadratic equation $(k-12) x^{2}+2(k-12) x+2=0$ has real and equal roots.
(a) $\mathrm{k}=0$ or $\mathrm{k}=14$
(b) $\mathrm{k}=12$ or $\mathrm{k}=24$
(c) $\mathrm{k}=14$ or $\mathrm{k}=12$
(d) $\mathrm{k}=1$ or $\mathrm{k}=12$
25. The value of k for which equation $9 \mathrm{x} 2+8 \mathrm{xk}+8=0$ has equal roots is:
(a) only 3
(b) only -3
(c) ± 3
(d) 9
26. Which of the following is not a quadratic equation?
(a) $x-\frac{3}{x}=4$
(b) $3 x-\frac{5}{x}=x^{2}$
(c) $x+\frac{1}{x}=3$
(d) $x^{2}-3=4 x^{2}-4 x$
27. Which of the following is a solution of the quadratic equation $2 x^{2}+x-6=0$?
(a) $\mathrm{x}=2$
(b) $x=-12$
(c) $x=\frac{3}{2}$
(d) $x=-3$
28. The value of k for which $x=-2$ is a root of the quadratic equation $k x^{2}+x-6=0$
(a) -1
(b) -2
(c) 2
(d) $-\frac{3}{2}$
29. The value of p so that the quadratics equation $x^{2}+5 p x+16=0$ has no real root, is
(a) $p>8$
(b) $p<5$
(c) $\frac{-8}{5}<x<\frac{8}{5}$
(d) $\frac{-8}{5} \leq x<0$
30. If $p x^{2}+3 w+q=0$ has two roots $x=-1$ and $x=-2$, the value of $q-p$ is
(a) -1
(b) -2
(c) 1
(d) 2
31. The common root of the quadratic equation $x^{2}-3 x+2=0$ and $2 x^{2}-5 x+2=0$ is:
(a) $x=2$
(b) $x=-2$
(c) $x=\frac{1}{2}$
(d) $x=1$
32. If $x^{2}-5 x+1=0$, the value of $\left(x+\frac{1}{x}\right)$ is:
(a) -5
(b) -2
(c) 5
(d) 3
33. If $\mathrm{a}-3=\frac{10}{a}$, the value of a are
(a) $-5,2$
(b) $5,-2$
(c) 5,2
(d) 5,0
34. If the roots of the quadratic equation $k x^{2}+(a+b) x+a b=0$ are $(-1,-b)$, the value of k is:
(a) -1
(b) -2
(c) 1
(d) 2
35. The quadratic equation with real coefficient whose one root is $2+\sqrt{3}$ is:
(a) $x^{2}-2 x+1=0$
(b) $x^{2}-4 x+1=0$
(c) $x^{2}-4 x+3=0$
(d) $x^{2}-4 x+4=0$
36. If the difference of roots of the quadratic equation $x^{2}+k x+12=0$ is 1 , the positive value of k is:
(a) -7
(b) 7
(c) 4
(d) 8
37. Find the values of k for which the quadratic equation $k^{2} x^{2}-2(k-1) x+4=0$ has real and equal roots.
(a) $\mathrm{k}=0$ or $\mathrm{k}=\frac{1}{3}$
(b) $\mathrm{k}=1$ or $\mathrm{k}=\frac{1}{3}$
(c) $\mathrm{k}=-1$ or $\mathrm{k}=\frac{1}{3}$
(d) $\mathrm{k}=-3$ or $\mathrm{k}=\frac{1}{3}$
38. If -4 is a root of the equation $x^{2}+p x-4=0$ and the equation $x^{2}+p x+q=0$ has equal roots, find the value of p and q.
(a) $p=3, q=9$
(b) $\mathrm{p}=9, \mathrm{q}=3$
(c) $\mathrm{p}=3, \mathrm{q}=\frac{4}{9}$
(d) $\mathrm{p}=3, \mathrm{q}=\frac{9}{4}$
39. If the roots of the equation $(a-b) x^{2}+(b-c) x+(c-a)=0$ are equal, then $b+c=$
(a) 2 a
(b) 2 bc
(c) 2 c
(d) none of these
40. Find the positive value of k for which the equations $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0$ will have real roots.
(a) 8
(b) 16
(c) -8
(d) -16
41. Find the positive value of k for which the equation $k x^{2}-6 x-2=0$ has real roots
(a) $k \leq \frac{-9}{2}$
(b) $k \geq \frac{-9}{2}$
(c) $\mathrm{k}>\frac{-9}{2}$
(d) $\mathrm{k}<\frac{-9}{2}$
42. Find the positive value of k for which the equation $3 \mathrm{x}^{2}+2 \mathrm{x}+\mathrm{k}=0$ has real roots
(a) $k \geq \frac{1}{3}$
(b) $k \leq \frac{1}{3}$
(c) $\mathrm{k}>\frac{1}{3}$
(d) $k<\frac{1}{3}$
43. Find the positive value of k for which the equation $2 \mathrm{x}^{2}+\mathrm{kx}+2=0$ has real roots
(a) $k \geq 4$
(b) $k \leq-4$
(c) both (a) and (c)
(d) none of these.
44. The sum of a number and its reciprocal is $\frac{10}{3}$. Find the number.
(a) 3
(b) $\frac{1}{3}$
(c) both (a) and (c)
(d) none of these
45. Divide 12 into two parts such that the sum of their squares is 74 .
(a) 7 and 5
(b) 8 and 4
(c) 10 and 2
(d) none of these
46. The sum of the squares of two consecutive natural numbers is 421 . Find the numbers.
(a) 14 and 5
(b) 14 and 15
(c) 10 and 5
(d) none of these
47. The sum of two numbers is 15 and the sum of their reciprocals is $\frac{3}{10}$. Find the numbers.
(a) 14 and 5
(b) 14 and 15
(c) 10 and 5
(d) none of these
48. Divide 12 into two parts such that their product is 32 .
(a) 7 and 5
(b) 8 and 4
(c) 10 and 2
(d) none of these

Solve the following quadratic equations:

1. $x^{2}+11 x+30=0$
2. $x^{2}+18 x+32=0$
3. $x^{2}+7 x-18=0$
4. $x^{2}+5 x-6=0$
5. $y^{2}-4 y+3=0$
6. $x^{2}-21 x+108=0$
7. $x^{2}-11 x-80=0$
8. $x^{2}-x-156=0$
9. $z^{2}-32 z-105=0$
10.40 $+3 x-x^{2}=0$
$11.6-x-x^{2}=0$
12.7 $x^{2}+49 x+84=0$
10. $m^{2}+17 m n-84 n^{2}=0$
$14.5 x^{2}+16 x+3=0$
11. $6 x^{2}+17 x+12=0$
12. $9 \mathrm{x}^{2}+18 \mathrm{x}+8=0$
13. $14 x^{2}+9 x+1=0$
14. $2 x^{2}+3 x-90=0$
15. $2 x^{2}+11 x-21=0$
16. $3 \mathrm{x}^{2}-14 \mathrm{x}+8=0$
17. $18 x^{2}+3 x-10=0$
18. $15 x^{2}+2 x-8=0$
19. $6 x^{2}+11 x-10=0$
20. $30 x^{2}+7 x-15=0$
21. $24 \mathrm{x}^{2}-41 \mathrm{x}+12=0$
22. $2 \mathrm{x}^{2}-7 \mathrm{x}-15=0$
$27.6 x^{2}+11 x-10=0$
23. $10 x^{2}-9 x-7=0$
29.5 $x^{2}-16 x-21=0$
24. $2 \mathrm{x}^{2}-\mathrm{x}-21=0$
31.15 $\mathrm{x}^{2}-\mathrm{x}-28=0$
25. $8 a^{2}-27 a b+9 b^{2}=0$
26. $5 x^{2}+33 x y-14 y^{2}=0$
$34.3 x^{3}-x^{2}-10 x=0$
27. $x^{2}+9 x+18=0$
28. $x^{2}+5 x-24=0$
29. $x^{2}-4 x-21=0$
30. $6 x^{2}+7 x-3=0$
31. $2 \mathrm{x}^{2}-7 \mathrm{x}-39=0$
32. $9 x^{2}-22 x+8=0$
33. $6 x^{2}+40=31 x$
34. $36 x^{2}-12 a x+\left(a^{2}-b^{2}\right)=0$
35. $8 x^{2}-22 x-21=0$
36. $2 x^{2}-x+\frac{1}{8}=0$
37. $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}=0$

Solve the following by Factorisation method:

1. $\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$
2. $2 x-\frac{3}{x}=1$
3. $\frac{4}{x}-3=\frac{5}{2 x+3}, x \neq 0, \frac{-3}{2}$
4. $\frac{x}{x+1}+\frac{x+1}{x}=\frac{34}{15}, x \neq-1$ and $x \neq 0$
5. $\frac{x+3}{x+2}=\frac{3 x-7}{2 x-3}$
6. $\frac{x-1}{x-2}+\frac{x-3}{x-4}=3 \frac{1}{3}(x \neq 2,4)$
7. $\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x},[x \neq 0,-(a+b)]$
8. $2\left(\frac{2 x-1}{x+3}\right)-3\left(\frac{x+3}{2 x-1}\right)=5, x \neq-3, \frac{1}{2}$
9. $5^{(x+1)}+5^{(2-x)}=5^{3}+1$
10. $5 x-\frac{35}{x}=18, x \neq 0$
11. $2^{2 x}-3 \cdot 2^{(x+2)}+32=0$
12. $4^{(x+1)}+4^{(1-x)}=10$
13. $3^{(x+2)}+3^{-x}=10$
14. $10 x-\frac{1}{x}=3$
15. $\frac{2}{x^{2}}-\frac{5}{x}+2=0$
16. $\sqrt{3} x^{2}+11 x+6 \sqrt{3}=0$
17. $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}=0$
18. $3 \sqrt{7} x^{2}+4 x-\sqrt{7}=0$
19. $\sqrt{7} x^{2}-6 x-13 \sqrt{7}=0$
20. $4 \sqrt{6} x^{2}-13 x-2 \sqrt{6}=0$
21. $x^{2}-(1+\sqrt{2}) x+\sqrt{2}=0$
22. $\left(\frac{4 x-3}{2 x+1}\right)-10\left(\frac{2 x+1}{4 x-3}\right)=3,\left(x \neq \frac{-1}{2}, \frac{3}{4}\right)$
23. $\left(\frac{x}{x+1}\right)^{2}-5\left(\frac{x}{x+1}\right)+6=0,(x \neq-1)$
24. $2\left(\frac{2 x-1}{x+3}\right)-3\left(\frac{x+3}{2 x-1}\right)=5,\left(x \neq-3, \frac{1}{2}\right)$
25. $2\left(\frac{x-1}{x+3}\right)-7\left(\frac{x+3}{x-1}\right)=5,(x \neq-3,1)$
26. $\frac{a}{x-b}+\frac{b}{x-a}=2,(x \neq a, b)$
27. $\frac{a}{a x-1}+\frac{b}{b x-1}=a+b,\left(x \neq \frac{1}{a}, \frac{1}{b}\right)$
28. $\frac{x+3}{x-2}-\frac{1-x}{x}=\frac{17}{4},(x \neq 0,2)$
29. $\frac{2 x}{x-4}+\frac{2 x-5}{x-3}=\frac{25}{3},(x \neq 4,3)$
30. $\frac{1}{x-3}-\frac{1}{x+5}=\frac{1}{6},(x \neq 3,-5)$
31. $\frac{1}{x-2}+\frac{2}{x-1}=\frac{6}{x},(x \neq 2,1)$
32. $\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30},(x \neq-4,7)$
33. $\frac{1}{x-2}+\frac{1}{x-4}=\frac{4}{3},(x \neq 2,4)$
34. $\frac{x-3}{x+3}-\frac{x+3}{x-3}=6 \frac{6}{7},(x \neq-3,3)$
35. $\frac{2 x}{x-3}+\frac{1}{2 x+3}+\frac{3 x+9}{(x-3)(2 x+3)}=0$
36. $x=\frac{1}{2-\frac{1}{2-\frac{1}{2-x}}}, x \neq 2$
37. $4 x^{2}-2\left(a^{2}+b^{2}\right) x+a^{2} b^{2}=0$
38. $9 x^{2}-9(a+b) x+\left(2 a^{2}+5 a b+2 b^{2}\right)=0$
39. $4 x^{2}-4 a^{2} x+\left(a^{4}-b^{4}\right)=0$
40. $x^{2}+\left(\frac{a+b}{a}+\frac{a}{a+b}\right) x+1=0$
41. $x^{2}+x-(a+1)(a+2)=0$
42. $x^{2}+3 x-\left(a^{2}+a-2\right)=0$
43. $a^{2} b^{2} x^{2}+b^{2} x-a^{2} x-1=0$
44. $x+\frac{1}{x}=25 \frac{1}{25}$
45. $(x-3)(x-4)=\frac{34}{(33)^{2}}$
46. $x^{2}+\left(a+\frac{1}{a}\right) x+1=0$
47. $(a+b)^{2} x^{2}-4 a b x-(a-b)^{2}=0$
48. $7 x+\frac{3}{x}=35 \frac{3}{5}$
49. $\frac{x-a}{x-b}+\frac{x-b}{x-a}=\frac{a}{b}+\frac{b}{a}$
50. $(x-5)(x-6)=\frac{25}{(24)^{2}}$

Solve the following quadratic equation (if they exist) by the method of completing the square:

1. $8 x^{2}-22 x-21=0$
2. $2 x^{2}-x+\frac{1}{8}=0$
3. $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}=0$
4. $\sqrt{2} x^{2}+7 x+5 \sqrt{2}=0$
5. $9 x^{2}-15 x+6=0$
6. $2 x^{2}-5 x+3=0$
7. $4 x^{2}+3 x+5=0$
8. $5 x^{2}-6 x-2=0$
9. $4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0$
10. $a^{2} x^{2}-3 a b x+2 b^{2}=0$
11. $x^{2}-(\sqrt{3}+1) x+\sqrt{3}=0$
12. $x^{2}-4 a x+4 a^{2}-b^{2}=0$
13. $x^{2}-(\sqrt{2}+1) x+\sqrt{2}=0$
14. $\sqrt{3} x^{2}+10 x+7 \sqrt{3}=0$
15. $\sqrt{2} x^{2}-3 x-2 \sqrt{2}=0$
16. $4 x^{2}+4 \sqrt{3} x+3=0$
17. $2 x^{2}+x+4=0$
18. $2 x^{2}+x-4=0$
19. $3 x^{2}+11 x+10=0$
20. $2 x^{2}-7 x+3=0$
21. $5 x^{2}-19 x+17=0$
22. $2 x^{2}+x-6=0$
23. $2 x^{2}-9 x+7=0$
24. $6 x^{2}+7 x-10=0$
25. $x^{2}-4 \sqrt{2} x+6=0$

Show that each of the following equations has real roots, and solve each by using the quadratic formula:

1. $9 x^{2}+7 x-2=0$
2. $x^{2}+6 x+6=0$
3. $2 x^{2}+5 \sqrt{3} x+6=0$
4. $36 x^{2}-12 a x+\left(a^{2}-b^{2}\right)=0$
5. $a^{2} b^{2} x^{2}-\left(4 b^{4}-3 a^{4}\right) x-12 a^{2} b^{2}=0$
6. $(a+b)^{2} x^{2}-4 a b x-(a-b)^{2}=0$
7. $4 x^{2}-2\left(a^{2}+b^{2}\right) x+a^{2} b^{2}=0$
8. $9 x^{2}-9(a+b) x+\left(2 a^{2}+5 a b+2 b^{2}\right)=0$
9. $4 x^{2}-4 a^{2} x+\left(a^{4}-b^{4}\right)=0$
10. $\sqrt{3} x^{2}+11 x+6 \sqrt{3}=0$
11. $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}=0$
12. $3 \sqrt{7} x^{2}+4 x-\sqrt{7}=0$
13. $\sqrt{7} x^{2}-6 x-13 \sqrt{7}=0$
14. $4 \sqrt{6} x^{2}-13 x-2 \sqrt{6}=0$
15. $x^{2}-(1+\sqrt{2}) x+\sqrt{2}=0$
16. $2 x^{2}+5 \sqrt{3} x+6=0$
17. $x^{2}-2 x+1=0$
18. $3 x^{2}+2 \sqrt{5} x-5=0$
19. $3 a^{2} x^{2}+8 a b x+4 b^{2}=0, a \neq 0$
20. $2 x^{2}-2 \sqrt{6} x+3=0$
21. $3 x^{2}-2 x+2=0$
22. $\sqrt{3} x^{2}+10 x-8 \sqrt{3}=0$
23. $x^{2}+x+2=0$
24. $16 x^{2}=24 x+1$
25. $25 x^{2}+20 x+7=0$
26. $6 x^{2}+x-2=0$
27. $x^{2}+5 x+5=0$
28. $p^{2} x^{2}+\left(p^{2}-q^{2}\right) x-q^{2}=0$
29. $a b x^{2}+\left(b^{2}-a c\right) x-b c=0$
30. $x^{2}-2 a x+\left(a^{2}-b^{2}\right)=0$
31. $12 a b x^{2}-\left(9 a^{2}-8 b^{2}\right) x-6 a b=0$
32. $24 x^{2}-41 x+12=0$
33. $2 x^{2}-7 x-15=0$
34. $6 x^{2}+11 x-10=0$
35. $10 x^{2}-9 x-7=0$
36. $x^{2}-x-156=0$
37. $z^{2}-32 z-105=0$
38. $40+3 x-x^{2}=0$
39. $6-x-x^{2}=0$
40. $7 x^{2}+49 x+84=0$
41. Find the value of k for which the quadratic equation $2 x^{2}+k x+3=0$ has two real equal roots.
42. Find the value of k for which the quadratic equation $k x(x-3)+9=0$ has two real equal roots.
43. Find the value of k for which the quadratic equation $4 \mathrm{x}^{2}-3 \mathrm{kx}+1=0$ has two real equal roots..
44. If -4 is a root of the equation $x^{2}+p x-4=0$ and the equation $x^{2}+p x+q=0$ has equal roots, find the value of p and q.
45. If -5 is a root of the equation $2 \mathrm{x}^{2}+\mathrm{px}-15=0$ and the equation $\mathrm{p}\left(\mathrm{x}^{2}+\mathrm{x}\right)+\mathrm{k}=0$ has equal roots, find the value of k.
46. Find the value of k for which the quadratic equation $(k-12) x^{2}+2(k-12) x+2=0$ has two real equal roots..
47. Find the value of k for which the quadratic equation $k^{2} x^{2}-2(k-1) x+4=0$ has two real equal roots..
48. If the roots of the equation $(a-b) x^{2}+(b-c) x+(c-a)=0$ are equal, prove that $b+c=2 a$.
49. Prove that both the roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are real but they are equal only when $\mathrm{a}=\mathrm{b}=\mathrm{c}$.
50. Find the positive value of k for which the equation $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0$ will have real roots.
51. Find the value of k for which the quadratic equation $k x^{2}-6 x-2=0$ has two real roots.
52. Find the value of k for which the quadratic equation $3 x^{2}+2 x+k=0$ has two real roots.
53. Find the value of k for which the quadratic equation $2 x^{2}+k x+2=0$ has two real roots.
54. Show that the equation $3 x^{2}+7 x+8=0$ is not true for any real value of x.
55. Show that the equation $2\left(a^{2}+b^{2}\right) x^{2}+2(a+b) x+1=0$ has no real roots, when $a \neq b$.
56. Find the value of k for which the quadratic equation $k x^{2}+2 x+1=0$ has two real and distinct roots.
57. Find the value of p for which the quadratic equation $2 x^{2}+p x+8=0$ has two real and distinct roots.
58. If the equation $\left(1+m^{2}\right) x^{2}+2 m c x+\left(c^{2}-a^{2}\right)=0$ has equal roots, prove that $c^{2}=a^{2}\left(1+m^{2}\right)$.
59. If the roots of the equation $\left(c^{2}-a b\right) x^{2}-2\left(a^{2}-b c\right) x+\left(b^{2}-a c\right)=0$ are real and equal, show that either $\mathrm{a}=0$ or $\left(\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}\right)=3 \mathrm{abc}$.
60. Find the value of k for which the quadratic equation $9 x^{2}+8 k x+16=0$ has two real equal roots.
61. Find the value of k for which the quadratic equation $(k+4) x^{2}+(k+1) x+1=0$ has two real equal roots.
62. Prove that the equation $x^{2}\left(a^{2}+b^{2}\right)+2 x(a c+b d)+\left(c^{2}+d^{2}\right)=0$ has no real root, if ad $\neq b c$.
63. If the roots of the equation $x^{2}+2 c x+a b=0$ are real unequal, prove that the equation $x^{2}-2(a$ $+b)+a^{2}+b^{2}+2 c^{2}=0$ has no real roots.
64. Find the positive values of k for which the equation $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0$ will both have real roots.
65. Find the value of k for which the quadratic equation $(k+4) x^{2}+(k+1) x+1=0$ has equal roots.
66. Find the value of k for which the quadratic equation $x^{2}-2(k+1) x+k^{2}=0$ has real and equal roots.
67. Find the value of k for which the quadratic equation $k^{2} x^{2}-2(2 k-1) x+4=0$ has real and equal roots.
68. Find the value of k for which the quadratic equation $(k+1) x^{2}-2(k-1) x+1=0$ has real and equal roots.
69. Find the value of k for which the quadratic equation $(4-k) x^{2}+(2 k+4) x+(8 k+1)=0$ has real and equal roots.
70. Find the value of k for which the quadratic equation $(2 k+1) x^{2}+2(k+3) x+(k+5)=0$ has real and equal roots.
