

## MCQ WORKSHEET-I QUADRATIC EQUATIONS

1. The roots of the equation  $x^2 + 7x + 10 = 0$  are (a) 2 and 5 (b) -2 and 5 (c) -2 and -5 (d) 2 and -5

2. If  $\alpha, \beta$  are the roots of the quadratic equation  $x^2 + x + 1 = 0$ , then  $\frac{1}{\alpha} + \frac{1}{\beta}$ 

(a) 0 (b) 1

- (b) 1 (c) -1 (d) none of these
- 3. If the equation  $x^2 + 4x + k = 0$  has real and distinct roots then (a) k < 4 (b) k > 4 (c)  $k \le 4$  (d)  $k \ge 4$
- 4. If the equation  $x^2 ax + 1 = 0$  has two distinct roots then (a) |a| = 2 (b) |a| < 2 (c) |a| > 2 (d) none of these
- 5. If the equation  $9x^2 + 6kx + 4 = 0$  has equal roots then the roots are both equal to (a)  $\pm \frac{2}{3}$  (b)  $\pm \frac{3}{2}$  (c) 0 (d)  $\pm 3$

6. If the equation  $(a^2 + b^2)x^2 - 2b(a + c)x + b^2 + c^2 = 0$  has equal roots then (a) 2b = a + c (b)  $b^2 = ac$  (c)  $b = \frac{2ac}{a+c}$  (d) b = ac

7. If the equation  $x^2 - bx + 1 = 0$  has two distinct roots then (a) -3 < b < 3 (b) -2 < b < 2 (c) b > 2 (d) b < -2

8. If x = 1 is a common root of the equations  $ax^2 + ax + 3 = 0$  and  $x^2 + x + b = 0$  then ab = (a) 6 (b) 3 (c) -3 (d)  $\frac{7}{2}$ 

9. If p and q are the roots of the equation  $x^2 - px + q = 0$ , then (a) p = 1, q = -2 (b) p = -2, q = 0 (c) b = 0, q = 1 (d) p = -2, q = 110. If the equation  $ax^2 + bx + c = 0$  has equal roots then c =

(a) 
$$\frac{-b}{2a}$$
 (b)  $\frac{b}{2a}$  (c)  $\frac{-b^2}{4a}$  (d)  $\frac{b^2}{4a}$ 

- **11.** If the equation  $ax^2 + 2x + a = 0$  has two distinct roots if (a)  $a = \pm 1$  (b) a = 0 (c) a = 0, 1 (d) a = -1, 0
- 12. The possible value of k for which the equation  $x^2 + kx + 64 = 0$  and  $x^2 8x + k = 0$  will both have real roots, is

(a) 4 (b) 8 (c) 12 (d) 16



- 1. The value of  $\sqrt{6 + \sqrt{6 + \dots}}$  is
  - (a) 4 (b) 3 (c) -2 (d)  $\frac{7}{2}$
- 2. If 2 is the root of the equation  $x^2 + bx + 12 = 0$  and the equation  $x^2 + bx + q = 0$  has equal roots then q =(a) 8 (b) 16 (c) -8 (d) -16
- 3. If the equation  $(a^2 + b^2)x^2 2(ac + bd)x + c^2 + d^2 = 0$  has equal roots then (a) ab = cd (b) ad = bc (c)  $ad = \sqrt{bc}$  (d)  $ab = \sqrt{cd}$
- 4. If a and b can take values 1, 2, 3, 4. Then the number of the equations of the form  $ax^2 + bx + c = 0$  having real roots is (a) 6 (b) 7 (c) 10 (d) 12
- 5. The number of quadratic equations having real roots and which do not change by squaring their roots is
   (a) 4 (b) 3 (c) 2 (d) 1
- 6. If one of the roots of the quadratic equation  $(k^2 + 4)x^2 + 13x + 4k$  is reciprocal of the other then k
  - (a) 2 (b) 1 (c) -1 (d) -2

7. If  $\alpha, \beta$  are the roots of the quadratic equation  $4x^2 + 3x + 7 = 0$ , then  $\frac{1}{\alpha} + \frac{1}{\alpha}$ 

- (a)  $\frac{7}{3}$  (b)  $\frac{-7}{3}$  (c)  $\frac{3}{7}$  (d)  $\frac{-3}{7}$
- 8. If  $\alpha, \beta$  are the roots of the quadratic equation  $x^2 p(x + 1) c = 0$ , then  $(\alpha + 1)(\beta + 1) = (a) c 1$  (b) 1 c (c) c (d) 1 + c
- 9. Find the values of k for which the quadratic equation  $2x^2 + kx + 3 = 0$  has real equal roots. (a)  $\pm 2\sqrt{6}$  (b)  $2\sqrt{6}$  (c) 0 (d)  $\pm 2$
- **10.** Find the values of k for which the quadratic equation kx(x 3) + 9 = 0 has real equal roots. (a) k = 0 or k = 4 (b) k = 1 or k = 4 (c) k = -3 or k = 3 (d) k = -4 or k = 4
- 11. Find the values of k for which the quadratic equation  $4x^2 3kx + 1 = 0$  has real and equal roots.

(a) 
$$\pm \frac{4}{3}$$
 (b)  $\pm \frac{2}{3}$  (c)  $\pm 2$  (d) none of these

- 12. Find the values of k for which the quadratic equation  $(k 12)x^2 + 2(k 12)x + 2 = 0$  has real and equal roots.
  - (a) k = 0 or k = 14 (b) k = 12 or k = 24 (c) k = 14 or k = 12 (d) k = 1 or k = 12



MCQ WORKSHEET-III OUADRATIC EOUATIONS

- 1. The value of k for which equation  $9x^2 + 8x^2 + 8x = 0$  has equal roots is: (a) only 3 (b) only -3(c)  $\pm 3$ (d) 9 2. Which of the following is not a quadratic equation? (a)  $x - \frac{3}{x} = 4$  (b)  $3x - \frac{5}{x} = x^2$  (c)  $x + \frac{1}{x} = 3$  (d)  $x^2 - 3 = 4x^2 - 4x$ 3. Which of the following is a solution of the quadratic equation  $2x^2 + x - 6 = 0$ ? (c)  $x = \frac{3}{2}$ (a) x = 2 (b) x = -12 (c)  $x = \frac{5}{2}$  (d) x = -34. The value of k for which x = -2 is a root of the quadratic equation  $kx^2 + x - 6 = 0$ (c) 2 (d)  $-\frac{3}{2}$ (b) -2 (a) - 15. The value of p so that the quadratics equation  $x^2 + 5px + 16 = 0$  has no real root, is (c)  $\frac{-8}{5} < x < \frac{8}{5}$  (d)  $\frac{-8}{5} \le x < 0$ (b) p<5 (a) p>8 6. If  $px^2 + 3w + q = 0$  has two roots x = -1 and x = -2, the value of q - p is (a) -1 (b) -2 (c) 1 (d) 2 7. The common root of the quadratic equation  $x^2 - 3x + 2 = 0$  and  $2x^2 - 5x + 2 = 0$  is: (b) x = -2(c)  $x = \frac{1}{2}$ (a) x = 2(d) x = 18. If  $x^2 - 5x + 1 = 0$ , the value of  $\left(x + \frac{1}{x}\right)$  is: (a) –5 (c) 5 (d) 3**9.** If  $a - 3 = \frac{10}{3}$ , the value of a are (c) 5.2 (a) -5, 2(b) 5. –2 (d) 5, 0**10.** If the roots of the quadratic equation  $kx^2 + (a + b)x + ab = 0$  are (-1, -b), the value of k is: (a) - 1(b) -2(c) 1(d) 2
  - 11. The quadratic equation with real coefficient whose one root is  $2+\sqrt{3}$  is: (a)  $x^2 - 2x + 1 = 0$  (b)  $x^2 - 4x + 1 = 0$  (c)  $x^2 - 4x + 3 = 0$  (d)  $x^2 - 4x + 4 = 0$

12. If the difference of roots of the quadratic equation  $x^2 + kx + 12 = 0$  is 1, the positive value of k is: (a) -7 (b) 7 (c) 4 (d) 8



1. Find the values of k for which the quadratic equation  $k^2x^2 - 2(k-1)x + 4 = 0$  has real and equal roots.

MCQ WORKSHEET-IV OUADRATIC EOUATIONS

(a) 
$$k = 0$$
 or  $k = \frac{1}{3}$  (b)  $k = 1$  or  $k = \frac{1}{3}$  (c)  $k = -1$  or  $k = \frac{1}{3}$  (d)  $k = -3$  or  $k = \frac{1}{3}$ 

2. If -4 is a root of the equation  $x^2 + px - 4 = 0$  and the equation  $x^2 + px + q = 0$  has equal roots, find the value of p and q.

(a) p = 3, q = 9 (b) p = 9, q = 3 (c)  $p = 3, q = \frac{4}{9}$  (d)  $p = 3, q = \frac{9}{4}$ 

3. If the roots of the equation  $(a - b)x^2 + (b - c)x + (c - a) = 0$  are equal, then b + c = (a) 2a (b) 2bc (c) 2c (d) none of these

4. Find the positive value of k for which the equations x<sup>2</sup> + kx + 64 = 0 and x<sup>2</sup> - 8x + k = 0 will have real roots.
(a) 8 (b) 16 (c) -8 (d) -16

5. Find the positive value of k for which the equation  $kx^2 - 6x - 2 = 0$  has real roots (a)  $k \le \frac{-9}{2}$  (b)  $k \ge \frac{-9}{2}$  (c)  $k > \frac{-9}{2}$  (d)  $k < \frac{-9}{2}$ 

6. Find the positive value of k for which the equation  $3x^2 + 2x + k = 0$  has real roots (a)  $k \ge \frac{1}{3}$  (b)  $k \le \frac{1}{3}$  (c)  $k > \frac{1}{3}$  (d)  $k < \frac{1}{3}$ 

7. Find the positive value of k for which the equation  $2x^2 + kx + 2 = 0$  has real roots (a)  $k \ge 4$  (b)  $k \le -4$  (c) both (a) and (c) (d) none of these.

8. The sum of a number and its reciprocal is  $\frac{10}{3}$ . Find the number.

(a) 3 (b)  $\frac{1}{3}$  (c) both (a) and (c) (d) none of these

- 9. Divide 12 into two parts such that the sum of their squares is 74.(a) 7 and 5 (b) 8 and 4 (c) 10 and 2 (d) none of these
- 10. The sum of the squares of two consecutive natural numbers is 421. Find the numbers.(a) 14 and 5 (b) 14 and 15 (c) 10 and 5 (d) none of these
- 11. The sum of two numbers is 15 and the sum of their reciprocals is  $\frac{3}{10}$ . Find the numbers.

(a) 14 and 5 (b) 14 and 15 (c) 10 and 5 (d) none of these

12. Divide 12 into two parts such that their product is 32.(a) 7 and 5(b) 8 and 4(c) 10 and 2(d) none of these



## PRACTICE QUESTIONS QUADRATIC EQUATIONS FACTORISATION METHOD

Solve the following quadratic equations:

| <b>1.</b> $x^2 + 11x + 30 = 0$   | $24.30x^2 + 7x - 15 = 0$                       |
|----------------------------------|------------------------------------------------|
| <b>2.</b> $x^2 + 18x + 32 = 0$   | $25.24x^2 - 41x + 12 = 0$                      |
| <b>3.</b> $x^2 + 7x - 18 = 0$    | $26.2x^2 - 7x - 15 = 0$                        |
| $4. \ x^2 + 5x - 6 = 0$          | $27.6x^2 + 11x - 10 = 0$                       |
| <b>5.</b> $y^2 - 4y + 3 = 0$     | $28.10x^2 - 9x - 7 = 0$                        |
| <b>6.</b> $x^2 - 21x + 108 = 0$  | $29.5x^2 - 16x - 21 = 0$                       |
| <b>7.</b> $x^2 - 11x - 80 = 0$   | $30.2x^2 - x - 21 = 0$                         |
| <b>8.</b> $x^2 - x - 156 = 0$    | <b>31.</b> $15x^2 - x - 28 = 0$                |
| <b>9.</b> $z^2 - 32z - 105 = 0$  | $32.8a^2 - 27ab + 9b^2 = 0$                    |
| $10.40 + 3x - x^2 = 0$           | $33.5x^2 + 33xy - 14y^2 = 0$                   |
| <b>11.</b> $6 - x - x^2 = 0$     | $34.3x^3 - x^2 - 10x = 0$                      |
| $12.7x^2 + 49x + 84 = 0$         | $35.x^2 + 9x + 18 = 0$                         |
| $13.m^2 + 17mn - 84n^2 = 0$      | $36.x^2 + 5x - 24 = 0$                         |
| $14.5x^2 + 16x + 3 = 0$          | $37.x^2 - 4x - 21 = 0$                         |
| $15.6x^2 + 17x + 12 = 0$         | $38.6x^2 + 7x - 3 = 0$                         |
| $16.9x^2 + 18x + 8 = 0$          | $39.2x^2 - 7x - 39 = 0$                        |
| $17.14x^2 + 9x + 1 = 0$          | $40.9x^2 - 22x + 8 = 0$                        |
| $18.2x^2 + 3x - 90 = 0$          | <b>41.</b> $6x^2 + 40 = 31x$                   |
| $19.2x^2 + 11x - 21 = 0$         | <b>42.</b> $36x^2 - 12ax + (a^2 - b^2) = 0$    |
| $20.3x^2 - 14x + 8 = 0$          | <b>43.</b> $8x^2 - 22x - 21 = 0$               |
| <b>21.</b> $18x^2 + 3x - 10 = 0$ | 11 2 1                                         |
| <b>22.</b> $15x^2 + 2x - 8 = 0$  | <b>44.</b> $2x^2 - x + \frac{-}{8} = 0$        |
| $23.6x^2 + 11x - 10 = 0$         | <b>45.</b> $4\sqrt{3}x^2 + 5x - 2\sqrt{3} = 0$ |



# PRACTICE QUESTIONS QUADRATIC EQUATIONS FACTORISATION METHOD

Solve the following by Factorisation method:

1. 
$$\sqrt{2x^2 + 7x + 5\sqrt{2}} = 0$$
  
2.  $2x - \frac{3}{x} = 1$   
3.  $\frac{4}{x} - 3 = \frac{5}{2x+3}, x \neq 0, -\frac{3}{2}$   
4.  $\frac{x}{x+1} + \frac{x+1}{x} = \frac{34}{15}, x \neq -1 \text{ and } x \neq 0$   
5.  $\frac{x+3}{x+2} = \frac{3x-7}{2x-3}$   
6.  $\frac{x-1}{x-2} + \frac{x-3}{x-4} = 3\frac{1}{3}(x \neq 2, 4)$   
7.  $\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}, [x \neq 0, -(a+b)]$   
8.  $2(\frac{2x-1}{x+3}) - 3(\frac{x+3}{2x-1}) = 5, x \neq -3, \frac{1}{2}$   
9.  $5^{(x+1)} + 5^{(2-x)} = 5^3 + 1$   
10.  $5x - \frac{35}{x} = 18, x \neq 0$   
11.  $2^{2x} - 3.2^{(x+2)} + 32 = 0$   
12.  $4^{(x+1)} + 4^{(1-x)} = 10$   
13.  $3^{(x+2)} + 3^{-x} = 10$   
14.  $10x - \frac{1}{x} = 3$   
15.  $\frac{2}{x^2} - \frac{5}{x} + 2 = 0$   
16.  $\sqrt{3x^2} + 11x + 6\sqrt{3} = 0$   
17.  $4\sqrt{3x^2} + 5x - 2\sqrt{3} = 0$   
18.  $3\sqrt{7x^2} + 4x - \sqrt{7} = 0$   
19.  $\sqrt{7x^2} - 6x - 13\sqrt{7} = 0$   
20.  $4\sqrt{6x^2} - 13x - 2\sqrt{6} = 0$ 

21. 
$$x^{2} - (1 + \sqrt{2})x + \sqrt{2} = 0$$
  
22.  $\left(\frac{4x-3}{2x+1}\right) - 10\left(\frac{2x+1}{4x-3}\right) = 3, \left(x \neq \frac{-1}{2}, \frac{3}{4}\right)$   
23.  $\left(\frac{x}{x+1}\right)^{2} - 5\left(\frac{x}{x+1}\right) + 6 = 0, (x \neq -1)$   
24.  $2\left(\frac{2x-1}{x+3}\right) - 3\left(\frac{x+3}{2x-1}\right) = 5, (x \neq -3, \frac{1}{2}\right)$   
25.  $2\left(\frac{x-1}{x+3}\right) - 7\left(\frac{x+3}{x-1}\right) = 5, (x \neq -3, 1)$   
26.  $\frac{a}{x-b} + \frac{b}{x-a} = 2, (x \neq a, b)$   
27.  $\frac{a}{ax-1} + \frac{b}{bx-1} = a + b, \left(x \neq \frac{1}{a}, \frac{1}{b}\right)$   
28.  $\frac{x+3}{x-2} - \frac{1-x}{x} = \frac{17}{4}, (x \neq 0, 2)$   
29.  $\frac{2x}{x-4} + \frac{2x-5}{x-3} = \frac{25}{3}, (x \neq 4, 3)$   
30.  $\frac{1}{x-3} - \frac{1}{x+5} = \frac{1}{6}, (x \neq 3, -5)$   
31.  $\frac{1}{x-2} + \frac{2}{x-1} = \frac{6}{x}, (x \neq 2, 1)$   
32.  $\frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}, (x \neq -4, 7)$   
33.  $\frac{1}{x-2} + \frac{1}{x-4} = \frac{4}{3}, (x \neq 2, 4)$   
34.  $\frac{x-3}{x+3} - \frac{x+3}{x-3} = 6\frac{6}{7}, (x \neq -3, 3)$   
35.  $\frac{2x}{x-3} + \frac{1}{2x+3} + \frac{3x+9}{(x-3)(2x+3)} = 0$   
36.  $x = \frac{1}{2-\frac{1}{2-\frac{1}{2-x}}}, x \neq 2$   
37.  $4x^{2} - 2(a^{2} + b^{2})x + a^{2}b^{2} = 0$   
38.  $9x^{2} - 9(a + b)x + (2a^{2} + 5ab + 2b^{2}) = 0$   
39.  $4x^{2} - 4a^{2}x + (a^{4} - b^{4}) = 0$ 







Solve the following quadratic equation (if they exist) by the method of completing the square:

1.  $8x^2 - 22x - 21 = 0$ 2.  $2x^2 - x + \frac{1}{8} = 0$ 3.  $4\sqrt{3}x^2 + 5x - 2\sqrt{3} = 0$ 4.  $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$ 5.  $9x^2 - 15x + 6 = 0$ 6.  $2x^2 - 5x + 3 = 0$ 7.  $4x^2 + 3x + 5 = 0$ 8.  $5x^2 - 6x - 2 = 0$ 9.  $4x^2 + 4bx - (a^2 - b^2) = 0$ **10.**  $a^2x^2 - 3abx + 2b^2 = 0$ **11.**  $x^2 - (\sqrt{3} + 1)x + \sqrt{3} = 0$ 12.  $x^2 - 4ax + 4a^2 - b^2 = 0$ **13.**  $x^2 - (\sqrt{2} + 1)x + \sqrt{2} = 0$ 14.  $\sqrt{3}x^2 + 10x + 7\sqrt{3} = 0$ 15.  $\sqrt{2}x^2 - 3x - 2\sqrt{2} = 0$ **16.**  $4x^2 + 4\sqrt{3}x + 3 = 0$ 17.  $2x^2 + x + 4 = 0$ **18.**  $2x^2 + x - 4 = 0$ **19.**  $3x^2 + 11x + 10 = 0$ **20.**  $2x^2 - 7x + 3 = 0$ **21.**  $5x^2 - 19x + 17 = 0$ **22.**  $2x^2 + x - 6 = 0$ **23.**  $2x^2 - 9x + 7 = 0$ **24.**  $6x^2 + 7x - 10 = 0$ **25.**  $x^2 - 4\sqrt{2}x + 6 = 0$ 

PERL EDUCATION



### PRACTICE QUESTIONS QUADRATIC EQUATIONS METHOD OF QUADRATIC FORMULA

Show that each of the following equations has real roots, and solve each by using the quadratic formula:

| 1.  | $9x^2 + 7x - 2 = 0$                         |
|-----|---------------------------------------------|
| 2.  | $x^2 + 6x + 6 = 0$                          |
| 3.  | $2x^2 + 5\sqrt{3}x + 6 = 0$                 |
| 4.  | $36x^2 - 12ax + (a^2 - b^2) = 0$            |
| 5.  | $a^2b^2x^2 - (4b^4 - 3a^4)x - 12a^2b^2 = 0$ |
| 6.  | $(a+b)^2 x^2 - 4abx - (a-b)^2 = 0$          |
| 7.  | $4x^2 - 2(a^2 + b^2)x + a^2b^2 = 0$         |
| 8.  | $9x^2 - 9(a+b)x + (2a^2 + 5ab + 2b^2) = 0$  |
| 9.  | $4x^2 - 4a^2x + (a^4 - b^4) = 0$            |
| 10. | $\sqrt{3}x^2 + 11x + 6\sqrt{3} = 0$         |
| 11. | $4\sqrt{3}x^2 + 5x - 2\sqrt{3} = 0$         |
| 12. | $3\sqrt{7}x^2 + 4x - \sqrt{7} = 0$          |
| 13. | $\sqrt{7}x^2 - 6x - 13\sqrt{7} = 0$         |
| 14. | $4\sqrt{6}x^2 - 13x - 2\sqrt{6} = 0$        |
| 15. | $x^2 - (1 + \sqrt{2})x + \sqrt{2} = 0$      |
| 16. | $2x^2 + 5\sqrt{3}x + 6 = 0$                 |
| 17. | $x^2 - 2x + 1 = 0$                          |
| 18. | $3x^2 + 2\sqrt{5}x - 5 = 0$                 |
| 19. | $3a^2x^2 + 8abx + 4b^2 = 0, a \neq 0$       |
| 20. | $2x^2 - 2\sqrt{6}x + 3 = 0$                 |
| 21. | $3x^2 - 2x + 2 = 0$                         |
| 22. | $\sqrt{3}x^2 + 10x - 8\sqrt{3} = 0$         |
| 23. | $x^2 + x + 2 = 0$                           |
| 24. | $16x^2 = 24x + 1$                           |
| 25. | $25x^2 + 20x + 7 = 0$                       |

26. 
$$6x^2 + x - 2 = 0$$
  
27.  $x^2 + 5x + 5 = 0$   
28.  $p^2x^2 + (p^2 - q^2)x - q^2 = 0$   
29.  $abx^2 + (b^2 - ac)x - bc = 0$   
30.  $x^2 - 2ax + (a^2 - b^2) = 0$   
31.  $12abx^2 - (9a^2 - 8b^2)x - 6ab = 0$   
32.  $24x^2 - 41x + 12 = 0$   
33.  $2x^2 - 7x - 15 = 0$   
34.  $6x^2 + 11x - 10 = 0$   
35.  $10x^2 - 9x - 7 = 0$   
36.  $x^2 - x - 156 = 0$   
37.  $z^2 - 32z - 105 = 0$   
38.  $40 + 3x - x^2 = 0$   
39.  $6 - x - x^2 = 0$ 



- 1. Find the value of k for which the quadratic equation  $2x^2 + kx + 3 = 0$  has two real equal roots.
- 2. Find the value of k for which the quadratic equation kx(x 3) + 9 = 0 has two real equal roots.
- 3. Find the value of k for which the quadratic equation  $4x^2 3kx + 1 = 0$  has two real equal roots..
- 4. If -4 is a root of the equation  $x^2 + px 4 = 0$  and the equation  $x^2 + px + q = 0$  has equal roots, find the value of p and q.
- 5. If -5 is a root of the equation  $2x^2 + px 15 = 0$  and the equation  $p(x^2 + x) + k = 0$  has equal roots, find the value of k.
- 6. Find the value of k for which the quadratic equation  $(k 12)x^2 + 2(k 12)x + 2 = 0$  has two real equal roots.
- 7. Find the value of k for which the quadratic equation  $k^2x^2 2(k 1)x + 4 = 0$  has two real equal roots.
- 8. If the roots of the equation  $(a b)x^2 + (b c)x + (c a) = 0$  are equal, prove that b + c = 2a.
- 9. Prove that both the roots of the equation (x a)(x b) + (x b)(x c) + (x c)(x a) = 0 are real but they are equal only when a = b = c.
- 10. Find the positive value of k for which the equation  $x^2 + kx + 64 = 0$  and  $x^2 8x + k = 0$  will have real roots.
- 11. Find the value of k for which the quadratic equation  $kx^2 6x 2 = 0$  has two real roots.
- 12. Find the value of k for which the quadratic equation  $3x^2 + 2x + k = 0$  has two real roots.
- 13. Find the value of k for which the quadratic equation  $2x^2 + kx + 2 = 0$  has two real roots.
- 14. Show that the equation  $3x^2 + 7x + 8 = 0$  is not true for any real value of x.
- **15.** Show that the equation  $2(a^2 + b^2)x^2 + 2(a + b)x + 1 = 0$  has no real roots, when  $a \neq b$ .
- 16. Find the value of k for which the quadratic equation  $kx^2 + 2x + 1 = 0$  has two real and distinct roots.
- 17. Find the value of p for which the quadratic equation  $2x^2 + px + 8 = 0$  has two real and distinct roots.
- **18.** If the equation  $(1 + m^2)x^2 + 2mcx + (c^2 a^2) = 0$  has equal roots, prove that  $c^2 = a^2(1 + m^2)$ .

- **19.** If the roots of the equation  $(c^2 ab)x^2 2(a^2 bc)x + (b^2 ac) = 0$  are real and equal, show that either a = 0 or  $(a^3 + b^3 + c^3) = 3abc$ .
- **20.** Find the value of k for which the quadratic equation  $9x^2 + 8kx + 16 = 0$  has two real equal roots.
- **21.** Find the value of k for which the quadratic equation  $(k + 4)x^2 + (k+1)x + 1 = 0$  has two real equal roots.
- **22.** Prove that the equation  $x^2(a^2 + b^2) + 2x(ac + bd) + (c^2 + d^2) = 0$  has no real root, if  $ad \neq bc$ .
- **23.** If the roots of the equation  $x^2 + 2cx + ab = 0$  are real unequal, prove that the equation  $x^2 2(a + b) + a^2 + b^2 + 2c^2 = 0$  has no real roots.
- **24.** Find the positive values of k for which the equation  $x^2 + kx + 64 = 0$  and  $x^2 8x + k = 0$  will both have real roots.
- **25.** Find the value of k for which the quadratic equation  $(k + 4)x^2 + (k + 1)x + 1 = 0$  has equal roots.
- **26.** Find the value of k for which the quadratic equation  $x^2 2(k + 1)x + k^2 = 0$  has real and equal roots.
- **27.** Find the value of k for which the quadratic equation  $k^2x^2 2(2k 1)x + 4 = 0$  has real and equal roots.
- **28.** Find the value of k for which the quadratic equation  $(k + 1)x^2 2(k 1)x + 1 = 0$  has real and equal roots.
- **29.** Find the value of k for which the quadratic equation  $(4 k)x^2 + (2k + 4)x + (8k + 1) = 0$  has real and equal roots.
- **30.** Find the value of k for which the quadratic equation  $(2k + 1)x^2 + 2(k + 3)x + (k + 5) = 0$  has real and equal roots.