1. If the replacement set is the set of natural numbers (N), find the solution set of :
i. $\quad 3 \mathrm{x}+4<16$
ii. $\quad 8-\mathrm{x} \leq 4 \mathrm{x}-2$.
2. If the replacement set is the set of whole numbers (W), find the solution set of :
i. $\quad 5 x+4 \leq 24$
ii. $\quad 4 \mathrm{x}-2<2 \mathrm{x}+10$.
3. If the replacement set is the set of integers, (I or Z), between -6 and 8 , find the solution set of:
i. $\quad 6 x-1 \geq 9+x$
ii. $\quad 15-3 x>x-3$.
4. If the replacement set is the set of real numbers (R), find the solution set of :
i. $\quad 5-3 x<11$
ii. $\quad 8+3 \mathrm{x} \geq 28-2 \mathrm{x}$.
5. Solve : $\frac{2}{2}-5 \leq \frac{-4}{3}-4$, where x is a positive odd integer.
6. Solve the following inequation : $2 \mathrm{y}-3<\mathrm{y}+1 \leq 4 \mathrm{y}+7$; if :
$y \in R$ (real numbers)
7. Given that $x \in R$, solve the following inequality and graph the solution on the number line $:-1 \leq 3+4 x<23$.
8. Simplify : $-\frac{1}{3} \leq-\frac{1}{2}<\frac{1}{6}: x \in R$.
9. List the solution set of $50-3(2 x-5)<25$, given that $x \in W$. Also, represent the solution set obtained on a number line.
10. Solve and graph the solution set of $3 x+6 \geq 9$ and $-5 x>-15$; where $x \in R$.
11. Solve and graph the solution set of $-2<2 x-6$ or $-2 x+5 \geq 13$; where $x \in R$.
12. Given : $\mathrm{P}=\{: 5<2-1 \leq 11, \in\}$

$$
Q=\{:-1 \leq 3+4<23, \in\}
$$

where $\mathrm{R}=\{$ rea num $\}$ and $\mathrm{I}=\{$ egers $\}$.
Represent P and Q on two different number lines. Write down the elements of $\mathrm{P} \cap \mathrm{Q}$.

1. Solve : $x+2>9, x \in W$.
2. Solve the inequality $4\left(\frac{1}{2}-p\right)+7 \geq 57$ over R and graph the solution set.
3. Solve the following inequation: $\frac{2 x-3}{4}+8 \geq 2+\frac{4 x}{3} ; x \in R$.
4. Find the solution set of $-3<x-2 \leq 9-2 x ; x \in Z$. Also graph the solution set.
5. Find the range of values of x , which satisfy the inequality: $\frac{1}{5} \leq \frac{x}{10}+1<\frac{2}{5} ; x \in R$.
6. Solve and graph the solution set of
i. $2 x=9<7$ and $3 x+9 \leq 25, x \in R$;
ii. $\quad 3 x-2>19$ or $3-2 x \geq-7 ; x \in R$.
iii. $\{x: 4<3 x-2 \leq 13, x \in R\}$ and $\{x:-2 \leq 5+7 x<40, x \in Z\}$
7. Solve the following equations, write the solution set and represent it on the number line: $\frac{x}{3} \leq \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}, x \in R$
8. Solve the following equations, write the solution set and represent it on the number line:

$$
-3(\mathrm{x}-7) \geq 15-7 \mathrm{x}>\frac{x+1}{3}, x \in R .
$$

9. Write down the range of values of $x(\in)$ for which both the inequations $x>$ and $-1 \leq$ $x \leq 4$ are true.
10. The diagram, given below, represents two inequations P and Q on real number lines :
$\mathrm{P}=$
$Q=$
(i) Write down P and Q in set builder notation.
(ii) Represent each of the following sets on different number lines :
(a) $P \cup Q$
(b) $P \cap Q$
(c) $P-Q$
(d) Q - P
(e) $P \cap Q^{\prime}$
(f) $P^{\prime} \cap Q$.
11. Find three smallest consecutive whole numbers such that the difference between onefourth of the largest and one-fifth of the smallest is at least 3.
