

LINEAR INEQUATIONS (IN ONE VARIABLE)

MATHEMATICS

10TH ICSE

1. If the replacement set is the set of natural numbers (N), find the solution set of:

i.
$$3x + 4 < 16$$

ii.
$$8 - x < 4x - 2$$
.

2. If the replacement set is the set of whole numbers (W), find the solution set of:

i.
$$5x + 4 \le 24$$

ii.
$$4x - 2 < 2x + 10$$
.

3. If the replacement set is the set of integers, (I or Z), between -6 and 8, find the solution set of :

i.
$$6x - 1 \ge 9 + x$$

ii.
$$15 - 3x > x - 3$$
.

4. If the replacement set is the set of real numbers (R), find the solution set of:

i.
$$5 - 3x < 11$$

ii.
$$8 + 3x \ge 28 - 2x$$
.

5. Solve: $\frac{1}{2} - 5 \le \frac{1}{3} - 4$, where x is a positive odd integer.

6. Solve the following inequation : $2y - 3 < y + 1 \le 4y + 7$; if :

$$y \in R$$
 (real numbers)

7. Given that $x \in R$, solve the following inequality and graph the solution on the number line $: -1 \le 3 + 4x < 23$.

8. Simplify:
$$-\frac{1}{3} \le \frac{1}{2} - 1\frac{1}{3} < \frac{1}{6}$$
: $x \in \mathbb{R}$.

9. List the solution set of 50 - 3(2x - 5) < 25, given that $x \in W$. Also, represent the solution set obtained on a number line.

10. Solve and graph the solution set of $3x + 6 \ge 9$ and -5x > -15; where $x \in R$.

11. Solve and graph the solution set of -2 < 2x - 6 or $-2x + 5 \ge 13$; where $x \in \mathbb{R}$.

12. Given:
$$P = \{ : 5 < 2 - 1 \le 11, \in \}$$

$$Q = \{ : -1 \le 3 + 4 < 23, \in \}$$

where
$$R = \{rea \ num \}$$
 and $I = \{ egers \}$.

Represent P and Q on two different number lines. Write down the elements of P \cap Q.

PERL EDUCATION

LINEAR EQUATIONS IN ONE VARIABLE

MATHEMATICS

10TH ICSE

1. Solve : x + 2 > 9, $x \in W$.

- 2. Solve the inequality $4(\frac{1}{2} p) + 7 \ge 57$ over R and graph the solution set.
- 3. Solve the following inequation: $\frac{2x-3}{4} + 8 \ge 2 + \frac{4x}{3}$; $x \in \mathbb{R}$.
- 4. Find the solution set of $-3 < x 2 \le 9 2x$; $x \in \mathbb{Z}$. Also graph the solution set.
- 5. Find the range of values of x, which satisfy the inequality: $\frac{1}{5} \le \frac{x}{10} + 1 < \frac{2}{5}$; $x \in \mathbb{R}$.
- 6. Solve and graph the solution set of
 - i. 2x = 9 < 7 and $3x + 9 \le 25$, $x \in R$;
 - ii. 3x 2 > 19 or $3 2x \ge -7$; $x \in R$.
 - iii. $\{x: 4 < 3x 2 \le 13, x \in R\}$ and $\{x: -2 \le 5 + 7x < 40, x \in Z\}$
- **7.** Solve the following equations, write the solution set and represent it on the number line: $\frac{x}{3} \le \frac{x}{2} 1\frac{1}{3} < \frac{1}{6}$, $x \in R$
- 8. Solve the following equations, write the solution set and represent it on the number line: $-3 (x-7) \ge 15 7x > \frac{x+1}{3}$, $x \in \mathbb{R}$.
- **9.** Write down the range of values of x (\in) for which both the inequations x > and -1 \leq x \leq 4 are true.
- 10. The diagram, given below, represents two inequations P and Q on real number lines:

P =

Q =

- (i) Write down P and Q in set builder notation.
- (ii) Represent each of the following sets on different number lines:
 - (a) $P \cup Q$
- (b) $P \cap Q$
- (c) P Q

- (d) Q P
- (e) $P \cap Q'$
- (f) $P' \cap Q$.
- **11.** Find three smallest consecutive whole numbers such that the difference between one-fourth of the largest and one-fifth of the smallest is at least 3.