1. The pair of equations $y=0$ and $y=-7$ has
(a) one solution
(b) two solution
(c) infinitely many solutions
(d) no solution
2. The pair of equations $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$ graphically represents the lines which are
(a) parallel
(b) intersecting at (a, b)
(c) coincident
(d) intersecting at (b, a)
3. The value of $c$ for which the pair of equations $c x-y=2$ and $6 x-2 y=3$ will have infinitely many solutions is
(a) 3
(b) -3
(c) -12
(d) no value
4. When lines $l_{1}$ and $l_{2}$ are coincident, then the graphical solution system of linear equation have
(a) infinite number of solutions
(b) unique solution
(c) no solution
(d) one solution
5. When lines $l_{1}$ and $l_{2}$ are parallel, then the graphical solution system of linear equation have
(a) infinite number of solutions
(b) unique solution
(c) no solution
(d) one solution
6. The coordinates of the vertices of triangle formed between the lines and $y$-axis from the graph is
(a) $(0,5),(0,0)$ and $(6.5,0)$
(b) $(4,2),(0,0)$ and $(6.5,0)$
(c) $(4,2),(0,0)$ and $(0,5)$
(d) none of these
7. Five years ago Nuri was thrice old as Sonu. Ten years later, Nuri will be twice as old as Sonu. The present age, in years, of Nuri and Sonu are respectively
(a) 50 and 20
(b) 60 and 30
(c) 70 and 40
(d) 40 and 10
8. The pair of equations $5 x-15 y=8$ and $3 x-9 y=24 / 5$ has
(a) infinite number of solutions
(b) unique solution
(c) no solution
(d) one solution

9. The pair of equations $x+2 y+5=0$ and $-3 x-6 y+1=0$ have
(a) infinite number of solutions
(b) unique solution
(c) no solution
(d) one solution
10. The sum of the digits of a two digit number is 9 . If 27 is added to it, the digits of the numbers get reversed. The number is
(a) 36
(b) 72
(c) 63
(d) 25
11. If a pair of equation is consistent, then the lines will be
(a) parallel
(b) always coincident
(c) always intersecting
(d) intersecting or coincident
12. The solution of the equations $x+y=14$ and $x-y=4$ is
(a) $x=9$ and $y=5$
(b) $x=5$ and $y=9$
(c) $x=7$ and $y=7$
(d) $x=10$ and $y=4$
13. The sum of the numerator and denominator of a fraction is 12 . If the denominator is increased by b3, the fraction becomes $1 / 2$, then the fraction
(a) $\frac{4}{7}$
(b) $\frac{5}{7}$
(c) $\frac{6}{7}$
(d) $\frac{3}{7}$
14. The value of $k$ for which the system of equations $x-2 y=3$ and $3 x+k y=1$ has a unique solution is
(a) $k=-6$
(b) $\mathrm{k} \neq-6$
(c) $\mathrm{k}=0$
(d) no value
15. If a pair of equation is inconsistent, then the lines will be
(a) parallel
(b) always coincident
(c) always intersecting
(d) intersecting or coincident
16. The value of $k$ for which the system of equations $2 x+3 y=5$ and $4 x+k y=10$ has infinite many solution is
(a) $k=-3$
(b) $\mathrm{k} \neq-3$
(c) $\mathrm{k}=0$
(d) none of these
17. The value of $k$ for which the system of equations $k x-y=2$ and $6 x-2 y=3$ has a unique solution is
(a) $k=-3$
(b) $\mathrm{k} \neq-3$
(c) $\mathrm{k}=0$
(d) $k \neq 0$
18. Sum of two numbers is 35 and their difference is 13 , then the numbers are
(a) 24 and 12
(b) 24 and 11
(c) 12 and 11
(d) none of these
19. The solution of the equations $0.4 x+0.3 y=1.7$ and $0.7 x-0.2 y=0.8$ is
(a) $x=1$ and $y=2$
(b) $x=2$ and $y=3$
(c) $x=3$ and $y=4$
(d) $x=5$ and $y=4$
20. The solution of the equations $x+2 y=1.5$ and $2 x+y=1.5$ is
(a) $x=1$ and $y=1$
(b) $x=1.5$ and $y=1.5$ (c) $x=0.5$ and $y=0.5$ (d)
(d) none of these
21. The value of $k$ for which the system of equations $x+2 y=3$ and $5 x+k y+7=0$ has no solution is
(a) 10
(b) 6
(c) 3
(d) 1
22. The value of $k$ for which the system of equations $3 x+5 y=0$ and $k x+10 y=0$ has a non-zero solution is
(a) 0
(b) 2
(c) 6
(d) 8
23. Sum of two numbers is 50 and their difference is 10 , then the numbers are
(a) 30 and 20
(b) 24 and 14
(c) 12 and 2
(d) none of these
24. The sum of the digits of a two-digit number is 12 . The number obtained by interchanging its digit exceeds the given number by 18 , then the number is
(a) 72
(b) 75
(c) 57
(d) none of these
25. The sum of a two-digit number and the number obtained by interchanging its digit is 99 . If the digits differ by 3 , then the number is
(a) 36
(b) 33
(c) 66
(d) none of these
26. Seven times a two-digit number is equal to four times the number obtained by reversing the order of its digit. If the difference between the digits is 3 , then the number is
(a) 36
(b) 33
(c) 66
(d) none of these
27. A two-digit number is 4 more than 6 times the sum of its digits. If 18 is subtracted from the number, the digits are reversed, then the number is
(a) 36
(b) 46
(c) 64
(d) none of these
28. The sum of two numbers is 1000 and the difference between their squares is 25600 , then the numbers are
(a) 616 and 384
(b) 628 and 372
(c) 564 and 436
(d) none of these
29. Five years ago, A was thrice as old as B and ten years later A shall be twice as old as B, then the present age of A is
(a) 20
(b) 50
(c) 30
(d) none of these
30. The sum of thrice the first and the second is 142 and four times the first exceeds the second by 138 , then the numbers are
(a) 40 and 20
(b) 40 and 22
(c) 12 and 22
(d) none of these
31. The sum of twice the first and thrice the second is 92 and four times the first exceeds seven times the second by 2 , then the numbers are
(a) 25 and 20
(b) 25 and 14
(c) 14 and 22
(d) none of these
32. The difference between two numbers is 14 and the difference between their squares is 448 , then the numbers are
(a) 25 and 9
(b) 22 and 9
(c) 23 and 9
(d) none of these
33. The solution of the system of linear equations $\frac{x}{a}+\frac{y}{b}=a+b ; \frac{x}{a^{2}}+\frac{y}{b^{2}}=2$ are
(a) $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$
(b) $x=a^{2}$ and $y=b^{2}$
(c) $\mathrm{x}=1$ and $\mathrm{y}=1$
(d) none of these
34. The solution of the system of linear equations $2(a x-b y)+(a+4 b)=0 ; 2(b x+a y)+(b-4 a)=0$ are
(a) $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$
(b) $x=-1$ and $y=-1$
(c) $x=1$ and $y=1$
(d) none of these
35. The pair of equations $3 x+4 y=18$ and $4 x+\frac{16}{3} y=24$ has
(a) infinite number of solutions
(b) unique solution
(c) no solution
(d) cannot say anything
36. If the pair of equations $2 x+3 y=7$ and $k x+\frac{9}{2} y=12$ have no solution, then the value of $k$ is:
(a) $\frac{2}{3}$
(b) -3
(c) 3
(d) $\frac{3}{2}$
37. The equations $\mathrm{x}-\mathrm{y}=0.9$ and $\frac{11}{x+y}=2$ have the solution:
(a) $\mathrm{x}=5$ and $\mathrm{y}=\mathrm{a}$
(b) $x=3,2$ and $y=2,3$
(c) $\mathrm{x}=3$ and $\mathrm{y}=2$
(d) none of these
38. If $b x+a y=a^{2}+b^{2}$ and $a x-b y=0$, then the value of $x-y$ equals:
(a) $a-b$
(b) $\mathrm{b}-\mathrm{a}$
(c) $a^{2}-b^{2}$
(d) $b^{2}+a^{2}$.
39. If $2 x+3 y=0$ and $4 x-3 y=0$, then $x+y$ equals:
(a) 0
(b) -1
(c) 1
(d) 2
40. If $\sqrt{a} x-\sqrt{b} y=b-a$ and $\sqrt{b} x-\sqrt{a} y=0$, then the value of $\mathrm{x}, \mathrm{y}$ is:
(a) $a+b$
(b) $a-b$
(c) $\sqrt{a b}$
(d) $-\sqrt{a b}$
41. If $\frac{2}{x}+\frac{3}{y}=13$ and $\frac{5}{x}-\frac{4}{y}=-2$, then $\mathrm{x}+\mathrm{y}$ equals:
(a) $\frac{1}{6}$
(b) $-\frac{1}{6}$
(c) $\frac{5}{6}$
(d) $-\frac{5}{6}$
42. If $31 x+43 y=117$ and $43+31 y=105$, then value of $x-y$ is:
(a) $\frac{1}{3}$
(b) -3
(c) 3
(d) $-\frac{1}{3}$
43. If $19 x-17 y=55$ and $17 x-19 y=53$, then the value of $x-y$ is:
(a) $\frac{1}{3}$
(b) -3
(c) 3
(d) 5
44. If $\frac{x}{2}+y=0.8$ and $\frac{7}{\left(x+\frac{y}{2}\right)}=10$, then the value of $\mathrm{x}+\mathrm{y}$ is:
(a) 1
(b) -0.8
(c) 0.6
(d) 0.5
45. If $(6, k)$ is a solution of the equation $3 x+y-22=0$, then the value of $k$ is:
(a) 4
(b) -4
(c) 3
(d) -3
46. If $3 x-5 y=1, \frac{2 x}{x-y}=4$, then the value of $x+y$ is
(a) $\frac{1}{3}$
(b) -3
(c) 3
(d) $-\frac{1}{3}$
47. If $3 x+2 y=13$ and $3 x-2 y=5$, then the value of $x+y$ is:
(a) 5
(b) 3
(c) 7
(d) none of these
48. If the pair of equations $2 x+3 y=5$ and $5 x+\frac{15}{2} y=k$ represent two coincident lines, then the value of $k$ is:
(a) -5
(b) $\frac{-25}{2}$
(c) $\frac{25}{2}$
(d) $\frac{-5}{2}$
49. Rs. 4900 were divided among 150 children. If each girl gets Rs. 50 and a boy gets Rs. 25 , then the number of boys is:
(a) 100
(b) 102
(c) 104
(d) 105
