1. The value of k for which (-4) is a zero of the polynomial $x^{2}-x-(2 k+2)$ is
(a) 3
(b) 9
(c) 6
(d) -1
2. If the zeroes of the quadratic polynomial $a x 2+b x+c, c \neq 0$ are equal, then
(a) c and a have opposite sign
(b) c and b have opposite sign
(c) c and a have the same sign
(d) c and b have the same sign
3. The number of zeroes of the polynomial from the graph is
(a) 0
(b) 1
(c) 2
(d) 3

4. If one of the zero of the quadratic polynomial $x^{2}+3 x+k$ is 2 , then the value of k is
(a) 10
(b) -10
(c) 5
(d) -5
5. A quadratic polynomial whose zeroes are -3 and 4 is
(a) $x^{2}-x+12$
(b) $x^{2}+x+12$
(c) $2 x^{2}+2 x-24$
(d) none of the above.
6. The relationship between the zeroes and coefficients of the quadratic polynomial $a x^{2}+b x+c$
is (a) $\alpha+\beta=\frac{c}{a}$
(b) $\alpha+\beta=\frac{-b}{a}$
(c) $\alpha+\beta=\frac{-c}{a}$
(d) $\alpha+\beta=\frac{b}{a}$
7. The zeroes of the polynomial $x^{2}+7 x+10$ are
(a) 2 and 5
(b) -2 and 5
(c) -2 and -5
(d) 2 and -5
8. The relationship between the zeroes and coefficients of the quadratic polynomial $a x^{2}+b x+c$
is (a) $\alpha \cdot \beta=\frac{c}{a}$
(b) $\alpha \cdot \beta=\frac{-b}{a}$
(c) $\alpha \cdot \beta=\frac{-c}{a}$
(d) $\alpha \cdot \beta=\frac{b}{a}$
9. The zeroes of the polynomial $x^{2}-3$ are
(a) 2 and 5
(b) -2 and 5
(c) -2 and -5
(d) none of the above
10. The number of zeroes of the polynomial from the graph is
(a) 0
(b) 1
(c) 2
(d) 3
11. A quadratic polynomial whose sum and product of zeroes are -3 and 2 is
(a) $x^{2}-3 x+2$
(b) $x^{2}+3 x+2(c) x^{2}+2 x-3$.
(d) $x^{2}+2 x+3$.
12. The zeroes of the quadratic polynomial $\mathrm{x}^{2}+\mathrm{kx}+\mathrm{k}, k \neq 0$,

(a) cannot both be positive
(b) cannot both be negative
(c) are always unequal
(d) are always equal
13. If α, β are the zeroes of the polynomials $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$, then $\frac{1}{\alpha}+\frac{1}{\beta}$
(a) 0
(b) 1
(c) -1
(d) none of these
14. If one of the zero of the polynomial $f(x)=\left(k^{2}+4\right) x^{2}+13 x+4 k$ is reciprocal of the other then $\mathrm{k}=$
(a) 2
(b) 1
(c) -1
(d) -2
15. If α, β are the zeroes of the polynomials $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{2}+3 \mathrm{x}+7$, then $\frac{1}{\alpha}+\frac{1}{\beta}$
(a) $\frac{7}{3}$
(b) $\frac{-7}{3}$
(c) $\frac{3}{7}$
(d) $\frac{-3}{7}$
16. If the sum of the zeroes of the polynomial $f(x)=2 x^{3}-3 k x^{2}+4 x-5$ is 6 , then value of k is
(a) 2
(b) 4
(c) -2
(d) -4
17. The zeroes of a polynomial $p(x)$ are precisely the x-coordinates of the points, where the graph of $y=p(x)$ intersects the
(a) x - axis
(b) $y-a x i s$
(c) origin
(d) none of the above
18. If α, β are the zeroes of the polynomials $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{p}(\mathrm{x}+1)-\mathrm{c}$, then $(\alpha+1)(\beta+1)=$
(a) $\mathrm{c}-1$
(b) $1-\mathrm{c}$
(c) c
(d) $1+c$
19. A quadratic polynomial can have at most \qquad zeroes
(a) 0
(b) 1
(c) 2
(d) 3
20. A cubic polynomial can have at most \qquad zeroes.
(a) 0
(b) 1
(c) 2
(d) 3
21. Which are the zeroes of $p(x)=x^{2}-1$:
(a) $1,-1$
(b) $-1,2$
(c) $-2,2$
(d) $-3,3$
22. Which are the zeroes of $p(x)=(x-1)(x-2)$:
(a) $1,-2$
(b) $-1,2$
(c) 1,2
(d) $-1,-2$
23. Which of the following is a polynomial?
(a) $x^{2}-5 x+3$
(b) $\sqrt{x}+\frac{1}{\sqrt{x}}$
(c) $x^{3 / 2}-x+x^{1 / 2}$
(d) $x^{1 / 2}+x+10$
24. Which of the following is not a polynomial?
(a) $\sqrt{3} x^{2}-2 \sqrt{3} x+3$
(b) $\frac{3}{2} x^{3}-5 x^{2}-\frac{1}{\sqrt{2}} x-1$
(c) $x+\frac{1}{x}$
(d) $5 x^{2}-3 x+\sqrt{2}$
25. If α, β are the zeroes of the polynomials $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+5 \mathrm{x}+8$, then $\alpha+\beta$
(a) 5
(b) -5
(c) 8
(d) none of these
26. If α, β are the zeroes of the polynomials $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+5 \mathrm{x}+8$, then $\alpha \cdot \beta$
(a) 0
(b) 1
(c) -1
(d) none of these
27. On dividing $\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1$ by $x+\pi$ we get remainder:
(a) $-\pi^{3}+3 \pi^{2}-3 \pi+1$
(b) $\pi^{3}-3 \pi^{2}+3 \pi+1$
(c) $-\pi^{3}-3 \pi^{2}-3 \pi-1$
(d) $-\pi^{3}+3 \pi^{2}-3 \pi-1$
28. The zero of $p(x)=9 x+4$ is:
(a) $\frac{4}{9}$
(b) $\frac{9}{4}$
(c) $\frac{-4}{9}$
(d) $\frac{-9}{4}$
29. On dividing $\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1$ by $5+2 \mathrm{x}$ we get remainder:
(a) $\frac{8}{27}$
(b) $\frac{-8}{27}$
(c) $\frac{-27}{8}$
(d) $\frac{27}{8}$
30. A quadratic polynomial whose sum and product of zeroes are -3 and 4 is
(a) $x^{2}-3 x+12$
(b) $x^{2}+3 x+12$
(c) $2 x^{2}+x-24$.
(d) none of the above.
31. A quadratic polynomial whose zeroes are $\frac{3}{5}$ and $\frac{-1}{2}$ is
(a) $10 x^{2}-x-3$
(b) $10 x^{2}+x-3$
(c) $10 \mathrm{x}^{2}-\mathrm{x}+3$
(d) none of the above.
32. A quadratic polynomial whose sum and product of zeroes are 0 and 5 is
(a) $x^{2}-5$
(b) $x^{2}+5$
(c) $x^{2}+x-5$.
(d) none of the above.
33. A quadratic polynomial whose zeroes are 1 and -3 is
(a) $x^{2}-2 x-3$
(b) $x^{2}+2 x-3$
(c) $x^{2}-2 x+3$
(d) none of the above.
34. A quadratic polynomial whose sum and product of zeroes are -5 and 6 is
(a) $x^{2}-5 x-6$
(b) $x^{2}+5 x-6$
(c) $x^{2}+5 x+6$
(d) none of the above.
35. Which are the zeroes of $p(x)=x^{2}+3 x-10$:
(a) $5,-2$
(b) $-5,2$
(c) $-5,-2$
(d) none of these
36. Which are the zeroes of $p(x)=6 x^{2}-7 x-3$:
(a) $5,-2$
(b) $-5,2$
(c) $-5,-2$
(d) none of these
37. Which are the zeroes of $p(x)=x^{2}+7 x+12$:
(a) $4,-3$
(b) $-4,3$
(c) $-4,-3$
(d) none of these
38. The degree of the polynomial whose graph is given below:
(a) 1
(b) 2
(c) ≥ 3
(d) cannot be fixed
39. If the sum of the zeroes of the polynomial $3 \times 2-k x+6$ is 3 , then the value of k is:
(a) 3
(b) -3
(c) 6
(d) 9
40. The other two zeroes of the polynomial $\mathrm{x} 3-8 \mathrm{x} 2+19 \mathrm{x}-12$ if tis one zeroes is $\mathrm{x}=1$ are:
(a) $3,-4$
(b) $-3,-4$
(c) $-3,4$
(d) 3,4
41. The quadratic polynomial, the sum and product of whose zeroes are -3 and 2 is:
(a) $x^{2}-3 x+2$
(b) $x^{2}+3 x-2$
(c) $x^{2}+3 x+2$
(d) none of the these.
42. The third zero of the polynomial, if the sum and product of whose zeroes are -3 and 2 is:
(a) 7
(b) -7
(c) 14
(d) -14
43. If $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are two zeroes of the polynomial $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, then its other two zeroes are:
(a) $-1,-1$
(b) $1,-1$
(c) 1,1
(d) $3,-3$
44. If $a-b, a$ and $a+b$ are zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ the value of $(a+b)$ is
(a) $1 \pm \sqrt{2}$
(b) $-1+\sqrt{2}$
(c) $-1-\sqrt{2}$
(d) 3
45. A real numbers a is called a zero of the polynomial $f(x)$, then
(a) $f(a)=-1$
(b) $f(a)=1$
(c) $f(a)=0$
(d) $f(a)=-2$
46. Which of the following is a polynomial:
(a) $x^{2}+\frac{1}{x}$
(b) $2 x^{2}-3 \sqrt{x}+1$
(c) $x^{2}+x^{-2}+7$
(d) $3 x^{2}-3 x+1$
47. The product and sum of zeroes of the quadratic polynomial $\mathrm{ax} 2+\mathrm{bx}+\mathrm{c}$ respectively are:
(a) $\frac{b}{a}, \frac{c}{a}$
(b) $\frac{c}{a}, \frac{b}{a}$
(c) $\frac{c}{b}, 1$
(d) $\frac{c}{a}, \frac{-b}{a}$
48. The quadratic polynomial, sum and product of whose zeroes are 1 and -12 respectively is
(a) $x^{2}-x-12$
(b) $x^{2}+x-12$
(c) $x^{2}-12 x+1$
(d) $x^{2}-12 x-1$.
49. If the product of two of the zeroes of the polynomial $2 x^{3}-9 x^{2}+13 x-6$ is 2 , the third zero of the polynomial is:
(a) -1
(b) -2
(c) $\frac{3}{2}$
(d) $-\frac{3}{2}$
