MID - POINT AND INTERCEPT THEOREMS

1. Prove that the figure formed by joining the mid-points of the consecutive sides of a quadrilateral is a parallelogram.

2. The diagonals of a quad. ABCD are perpendicular, Show that the quadrilateral, formed by joining the mid-points of its sides is a rectangle.
3. Show that the quadrilateral formed by joining the mid-points of the sides of a square, is also a square.
4. Given $\triangle \mathrm{ABC}$, lines are drawn through A, B and c parallel respectively to the sides BC , $C A$ and $A B$ forming $\triangle P Q R$. Show that. $B C=\frac{1}{2} Q R$
5. $A B C$ is a triangle right angled at B and P is the mid-pt. of $A C$. Prove that $P B=P A=A C \frac{1}{2}$ AC
6. In the figure, ABCD is a trapezium in which side $\mathrm{AB} \|$ side DC and E is the mid-point of the side $A D$. If G is a point on the side $B C$ such that the segment $E G \| D C$, show that $E G$ $=\frac{1}{2}(\mathrm{AB}+\mathrm{DC})$

7. In a $\triangle A B C$, if a set of lines $P X, Q Y, R Z, S T$ drawn parallel to $B C$, divide one side $A B$ into 5 equal parts, they also divide the other side AC into 5 equal parts.

Also, $\mathrm{PX}=\frac{1}{5} \mathrm{BC}, \mathrm{QY}=\frac{2}{5} \mathrm{BC}, \mathrm{RZ}=\frac{3}{5} \mathrm{BC}, \mathrm{ST}=\frac{4}{5} \mathrm{BC}$.
8. M and N divide the side $A B$ of a $\triangle A B C$ into three equal parts. Line segments $M P$ and NQ are both parallel to BC and meet AC in P and Q respectively. Prove that P, Q divides AC into three equal parts.
9. In the figure AD is the median and $\mathrm{DE} \| \mathrm{AB}$. Prove that BE is the median.

10. In $\triangle A B C, A D$ is the median through A and E is the mid-point of $A D . B E$ produced meets $A C$ in F. Prove that $A F=\frac{1}{3} A C$.

