CIRCLE

1. The distance between two points A and B is 3 cm . A circle of radius 1.7 cm is drawn to pass through these points. Find the distance of AB from the centre of the circle.
2. Find the length of a chord which is at a distance 5 cm from the centre of a circle of radius 13 cm
3. AB, CD are parallel chords of a circle, 3 cm of a circle, 3 cm apart, If $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{Cd}=10$ cm , find the radius of the circle.
4. AB and CD are two parallel chords of a circle such that $\mathrm{AB}=16 \mathrm{~cm}$ and $\mathrm{CD}=30 \mathrm{~cm}$. If the chords are on the opposite sides of the centre and the distance between them is 23 cm , find the radius of the circle.
5. In a circle of radius $5 \mathrm{~cm}, \mathrm{AB}$ and AC are two chords such that $\mathrm{AB}=\mathrm{AC}=6 \mathrm{~cm}$. Find the length of the chord BC.
6. If a line 1 intersects two concentric circles at points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D as shown in the figure, prove that $\mathrm{AB}=\mathrm{CD}$. OR Prove that two concentric circles intercept equal portions on any straight line that cuts them

7. Prove that the line joining the mid-points of two equal chords of a circle makes equal angles with the chords
8. Two equal chords AB and CD of a circle with centre O , when produced meet at point P outside the circle prove that (i) $\mathrm{PB}=\mathrm{PD}$ and (ii) $\mathrm{PA}=\mathrm{PC}$
9. In an equilateral triangle, prove that the centroid and centre of the circum-circle(circumcenter) coincide.
10. In fig chord $A B=$ chord $B C$
i. What is the relation between arc AB and arc BC ?
ii. What is the relation between $\angle \mathrm{AOB}$ and $\angle \mathrm{BOC}$?
iii. If arc $A D>\operatorname{arc} A B C$, what is the relation between chord $A D$ and chord $A C$?

11. In equal circles with centres O and $\mathrm{p}, \widehat{A B}=\widehat{D E}$. find $\mathrm{m} \angle \mathrm{DPE}$.
12. In the fig two equal chords AB and CD of a circle with centre O , intersect each other at E. Prove that $\mathrm{AD}=\mathrm{CB}$.

13. A, B, C, D are four consecutive points on a circle such that $A B=C D$. Prove that $A C=$ BD.
14. In $\triangle \mathrm{ABC}$, the perpendiculars from vertices A and V on their opposite sides meet (when produced) the circum- circle of $\triangle \mathrm{ABC}$ at point D and E respectively. Prove that arc CD $=\operatorname{arc} \mathrm{CE}$.

