AREA THEOREMS

1. Show that the line segment joining the mid-point of a pair of opposite sides of a parallelogram divide it into two equal parallelograms.
2. In fig ABCD is a parallelogram $\mathrm{AE} \perp \mathrm{DC}$ and $\mathrm{CF} \perp \mathrm{AD}$. If $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{CF}=10 \mathrm{~cm}$ and $A E=8 \mathrm{~cm}$, find $A D$.

3. In $\triangle A B C, D$ and E are points on sides $A B$ and $A C$ respectively such that segment $D E$ $\|$ side $B C$. Prove that $\triangle A B E$ is equal in area to $\triangle A C D$

4. If $A D$ is median of $\triangle A B C$, prove that $\triangle A B D$ is equal in area to $\triangle A D C$. $O R$ shoe that a median divides a triangle into two triangles of equal area.
5. In fig ABC is a triangle and segment AD is one of its medians. If E is any point on AD , show that $\triangle \mathrm{ABE}=\triangle \mathrm{ACE}$. \qquad

6. Parallelogram $A B C D$ and rectangle $A B E F$ are on the same base $A B$ and also have equal areas. Show that perimeter of the parallelogram is greater than that of the rec tangle.
7. A point E is taken on the side BC of a parallelogram $\mathrm{ABCE} ; \mathrm{AE}$ and DC are produced to meet at F prove that:
(i) $\operatorname{ar}(\triangle \mathrm{DCE})=\operatorname{ar}(\triangle \mathrm{DEF})$
(ii) $\operatorname{ar}(\triangle \mathrm{ADF})=\operatorname{ar}(q u a d \mathrm{ABFC})$
8. show that the area of a rhombus is half the product of the length of its diagonals.
9. A point O inside a rectangle ABCD is joined to the vertices. Prove that $\operatorname{ar}(\triangle \mathrm{AOD})+$ $\operatorname{ar}(\triangle \mathrm{BOC})=\operatorname{ar}(\triangle \mathrm{AOB})+\operatorname{ar}(\triangle \mathrm{COD})$
10. If the median of $\triangle A B C$ interest at G, show that $\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\Delta B G C)=\operatorname{ar}(A G C)=\frac{1}{3}$ $\operatorname{ar}(\triangle \mathrm{ABC})$
11. The side $A B$ of a parallelogram $A B C D$ is produced to a point P. A line through $A \|$ to $C P$ meets CB produced in Q and parallelogram PBQR is completed. Show that ar (\|gm $\mathrm{ABCD}) \operatorname{ar}(\| g m P B Q R)$
12. In fig $B C\|X Y, C Y\| A B$ and $X B \| A C$. Prove that $\operatorname{ar}(\triangle A X B)=\operatorname{ar}(\triangle A Y C)$.

