Electric Current

- **1.** There is a positively charged sphere A and negatively charged sphere B, such that they are brought in electrical contact by a copper wire. Answer the following questions:
 - (a) Which sphere is at higher potential before electrical contact on the basis of convention?
 - (b) Which sphere is at lower potential before electrical contact on the basis of convention?
 - (c) In which direction conventional current flows?
 - (d) In which direction electronic current flows?
 - (e) What is potential of the spheres after electrical contact?
- 2. (a) What do you understand by the term electric potential?
 - (b) Define electric potential in terms of energy spent.
 - (c) State the unit of electric potential and define it.
- 3. (a) What do you understand by the term quantity of electric charge?
 - (b) State SI unit of electric charge and define it.
 - (c) How many electrons constitute one unit electric charge in SI system?
- 4. (a) What do you understand by the term electric current?
 - (b) State and define the SI unit of electric current.

(c) State the relation between electric current; number of electrons moving in a circuit and time in seconds.

- 5. How electric current flows in (i) solids (ii) liquids?
- 6. (a) Define the term potential difference.
 - (b) How is potential difference related to work done and quantity of charge?

Electric Current

- **1.** A charge of 1000 C flows through a conductor for 3 min and 20 s. Find the magnitude of current flowing through conductor.
- **2.** A charge of 5000 C flows through an electric circuit in 2 hours and 30 minutes. Calculate the magnitude of current in circuit.
- **3.** A charge of 8860 C flows through an electric circuit in 2 min and 40 s. Calculate the magnitude of current in circuit.
- 4. A dry cell can supply a charge of 50 C. If the current drawn from the cell is 750 μ A, find the time in which the cell completely discharges.
- A battery can supply a charge of 25 x 10⁴ C. If the current is drawn from battery at the rate of 2.5 A, calculate the time in which battery will discharge completely.
- **6.** A dry cell can supply a charge of 800 C. If continuous current of 8.0 mA is drawn, calculate the time in which cell will discharge completely.
- A charge of 50 mA flows for 0.5 hours through an electric circuit. Calculate the number of electrons which will drift in the circuit. [Charge on one electron 1.6 x 10-¹9 C]
- Calculate the total number of electrons flowing through a circuit in 20 mins and 40 s, if a current of 40 μA flows through the circuit.
- 9. $4 \ge 10^{20}$ electrons flow through a circuit in 10 hours. Calculate magnitude of current. [1 e = 1.6 x 10⁻¹⁹ C]
- 10. 25 coulombs of charge is brought from infinity to a given point in an electric field when 75 joule of work is done. What is the potential at the point?
- **11.** What is the electrical potential at a point in an electric field when 24 J of work is done in moving a charge of 96 C from infinity?
- **12.** A charge of 75 C is brought from infinity to a given point in an electric field, when amount of work done is 3.75 J. Calculate the electrical potential at that point.

Electric Curre

lec		DPP - 3
1.	SI unit potential difference is :	
	(a) coulomb	(c) volt
	(b) kelvin	(d) ampere
2.	Current in a circuit flows:	
	(a) in a direction from high potential to low potential	
	(b) in a direction from low potential to high potential	
	(c) in a direction of flow of electron	
	(d) in any direction	
3.	In a metallic conductor, electric current is thought to be due to movement of:	
	(a) ions	(c) electrons
	(b) amperes	(d) protons
4.	Assuming that the charges of an electron is 1.6 x 10-19 coulombs, the number of electrons passing	
	through a section of wire per sec, when the wire carries a current of one ampere is :	
	(a) 0.625×10^{19}	(c) 1.6×10^{19}
	(b) $1.6 \ge 10^{-19}$	(d) 0.627×10^{-17}
5.	Which the lowing is best conductor of electricity?	
	(a) copper	(c) platinum
	(b) gold	(d) silver
6.	What do you understand by the term electric cell?	
7.	Draw a neat and labeled diagram of simple voltaic cell showing clearly the direction of flow of	
	conventional current and direction of flow of electrons.	
8.	Briefly describe the theory of simple voltaic cell.	
9.	What do you understand by the following terms?	
	(a) electric circuit (b) closed electric circuit (c) open electric circuit.
10.	10. State two conditions necessary for a circuit, such that electric current flows through it.	
11.	Draw a neat diagram showing (i) closed electric circuit	(ii) open electric circuit.
12. Name four electric conductors and four electric insulators.		
13. (a) What do you understand by the term electric resistance?		
	(b) Why does the filament of an electric bulb in an electric circuit get white hot, but not the	
	connecting wires?	
14.	Is it correct to say that a resistance wire is an insulator or a bad conductor? Explain your answer.	