Mathematics

2020

Questions

(Two Hours and a half)
Answer to this Paper must be written on the paper provided separately.
You will not be allowed to write during the first 15 minutes.
This time is to be spend in reading the question paper.
The time given at the head of this Paper is the time allowed for writing the answers.
Attempt all questions from Section A and any four questions from Section B.
All working, including rough work, must be clearly shown and must be done on the same sheet as the rest of the answer.
Omission of essential working will result in loss of marks.
The intended marks for questions of parts of questions are given in brackets [].
Mathematical table are provided.

SECTION—A (40 Marks)

(Attempt all questions from this Section)
Question 1.
(a) Solve the following quadratic equation:

$$
x^{2}-7 x+3=0
$$

Give your answer correct to two decimal places.
(b) Given

$$
A=\left[\begin{array}{ll}
x & 3 \\
y & 3
\end{array}\right]
$$

If $A^{2}=3 I$, where I is the identity matrix of order 2 , find x and y.
(c) Using ruler and compass, construct a triangle $A B C$ where $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $\angle A B C=90^{\circ}$. Hence, construct a circle circumscribing the triangle $A B C$. Measure and write down the radius of the circle.
[4]
Question 2.
(a) Use factor theorem to factorise $6 x^{3}+17 x^{2}+4 x-12$ completely.
[3]
(b) Solve the following inequation and represent the solution set on the number line.
$\frac{3 x}{5}+2<x+4 \leq \frac{x}{2}+5, x \in \mathrm{R}$
(c) Draw a histogram for the given data, using a graph paper:

Weekly Wages (in ₹)	No. of People
$3000-4000$	4
$4000-5000$	9
$5000-6000$	18
$6000-7000$	6
$7000-8000$	7
$8000-9000$	2
$9000-10000$	4

Estimate the mode from the graph.

Question 3.

(a) In the figure given below, O is the centre of the circle and $A B$ is a diameter.
If $A C=B D$ and $\angle A O C=72^{\circ}$. Find:
(i) $\angle A B C$
(ii) $\angle B A D$
(iii) $\angle A B D$

(b) Prove that:
$\frac{\sin A}{1+\cot A}-\frac{\cos A}{1+\tan A}=\sin A-\cos A$
(c) In what ratio is the line joining $P(5,3)$ and $Q(-5,3)$ divided by the y-axis? Also find the coordinates of the point of intersection.
Question 4.
(a) A solid spherical ball of radius 6 cm is melted and recast into 64 identical spherical marbles. Find the radius of each marble.
(b) Each of the letters of the word 'AUTHORIZES' is written on identical circular discs and put in a bag.

They are well shuffled. If a disc is drawn at random from the bag, what is the probability that the letter is:
[3]
(i) a vowel
(ii) one of the first 9 letters of the English alphabet which appears in the given word.
(iii) one of the last 9 letters of the English alphabet which appears in the given word?
(c) Mr. Bedi visits the market and buys the following articles:
Medicines costing ₹ 950, GST @ 5\%
A pair of shoes costing ₹ 3000, GST @ 18\%
A laptop bag costing ₹ 1000 with a discount of 30%, GST @ 18\%.
(i) Calculate the total amount of GST paid.
(ii) The total bill amount including GST paid by Mr . Bedi.

SECTION—B (40 Marks)

(Attempt any four questions from this Section)

Question 5.

(a) A company with 500 shares of nominal value ₹ 120 declares an annual dividend of 15%. Calculate :
(i) the total amount of dividend paid by the company.
(ii) annual income of Mr. Sharma who holds 80 shares of the company.
If the return percent of Mr . Sharma from his shares is 10%, find the market value of each share.
(b) The mean of the following data is 16. Calculate the value of f.

Marks	5	10	15	20	25
No. of Students	3	7	f	9	6

(c) The $4^{\text {th }}, 6^{\text {th }}$ and the last term of a geometric progression are 10, 40 and 640 respectively. If the common ratio is positive, find the first term, common ratio and the number of terms of the series.

Question 6.

(a) If $A=\left[\begin{array}{ll}3 & 0 \\ 5 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}-4 & 2 \\ 1 & 0\end{array}\right]$

Find $A^{2}-2 A B+B^{2}$
(b) In the given figure $A B=9 \mathrm{~cm}, P A=7.5 \mathrm{~cm}$ and $P C=$ 5 cm . Chords $A D$ and $B C$ intersect at P.
(i) Prove that $\triangle P A B \sim \triangle P C D$
(ii) Find the length of $C D$.
(iii) Find area of $\triangle P A B$: area of $\triangle P C D$

(c) From the top of a cliff, the angle of depression of the top and bottom of a tower are observed to be 45° and 60° respectively. If the height of the tower is 20 m . Find:
(i) the height of the cliff
(ii) the distance between the cliff and the tower.

Question 7.

(a) Find the value of ' p ' if the lines, $5 x-3 y+2=0$ and $6 x-p y+7=0$ are perpendicular to each other. Hence, find the equation of a line passing through ($-2,-1$) and parallel to $6 x-p y+7=0$.
(b) Using properties of proportion find $x: y$, given:
$\frac{x^{2}+2 x}{2 x+4}=\frac{y^{2}+3 y}{3 y+9}$
(c) In the given figure $T P$ and $T Q$ are two tangents to the circle with centre O, touching at A and C respectively. If $\angle B C Q=55^{\circ}$ and $\angle B A P=60^{\circ}$, find:
(i) $\angle O B A$ and $\angle O B C$
(ii) $\angle A O C$
(iii) $\angle A T C$

Question 8.
(a) What must be added to the polynomial $2 x^{3}-3 x^{2}-8 x$, so that it leaves a remainder 10 when divided by $2 x+1 ?$

(b) Mr. Sonu has a recurring deposit account and deposits $₹ 750$ per month for 2 years. If he gets ₹ 19125 at the time of maturity, find the rate of interest.
(c) Use graph paper for this question.

Take $1 \mathrm{~cm}=1$ unit on both x and y axes.
(i) Plot the following points on your graph sheets: $A(-4,0), B(-3,2), C(0,4), D(4,1)$ and $E(7,3)$
(ii) Reflect the points B, C, D and E on the x-axis and name them as $B^{\prime}, C^{\prime}, D^{\prime}$ and E^{\prime} respectively.
(iii) Join the points $A, B, C, D, E, E^{\prime}, D^{\prime}, C^{\prime}, B^{\prime}$ and A in order.
(iv) Name the closed figure formed.

Question 9.

(a) 40 students enter for a game of shot-put competition. The distance thrown (in metres) is recorded below : [6]

Distance in m	Number of Students
$12-13$	3
$13-14$	9
$14-15$	12
$15-16$	9
$16-17$	4
$17-18$	2
$18-19$	1

Use a graph paper to draw an ogive for the above distribution.
Use a scale of $2 \mathrm{~cm}=1 \mathrm{~m}$ on one axis and $2 \mathrm{~cm}=5$ students on the other axis.
Hence using your graph find :
(i) the median
(ii) Upper Quartile
(iii) Number of students who cover a distance which is above $16 \frac{1}{2} \mathrm{~m}$.
(b) If $x=\frac{\sqrt{2 a+1}+\sqrt{2 a-1}}{\sqrt{2 a+1}-\sqrt{2 a-1}}$, prove that $x^{2}-4 a x+1=0$

Question 10.
(a) If the $6^{\text {th }}$ term of an A.P. is equal to four times its first term and the sum of first six terms is 75, find the first term and the common difference.
(b) The difference of two natural numbers is 7 and their product is 450 . Find the numbers.
[3]
[4] (c) Use ruler and compass for this question. Construct a circle of radius 4.5 cm . Draw a chord $A B=6 \mathrm{~cm}$.
(i) Find the locus of points equidistant from A and B. Mark the point where it meets the circle as D.
(ii) Join $A D$ and find the locus of points which are equidistant from $A D$ and $A B$. Mark the point where it meets the circle as C.
(iii) Join $B C$ and $C D$. Measure and write down the length of side $C D$ of the quadrilateral $A B C D$.

Question 11.
(a) A model of a high rise building is made to a scale of 1: 50.
(i) If the height of the model is 0.8 m , find the height of the actual building.
(ii) If the floor area of a flat in the building is $20 \mathrm{~m}^{2}$, find the floor area of that in the model.
(b) From a solid wooden cylinder of height 28 cm and diameter 6 cm , two conical cavities are hollowed out. The diameters of the cones are also of 6 cm and height 10.5 cm .

Taking $\pi=\frac{22}{7}$ find the volume of the remaining solid.

(c) Prove the identity

$$
\left(\frac{1-\tan \theta}{1-\cot \theta}\right)^{2}=\tan ^{2} \theta
$$

ANswers

SECTION-A

Solution 1.
(a) Given: $x^{2}-7 x+3=0$
Here,

$$
a=1, b=-7 \text { and } c=3
$$

$$
\begin{aligned}
& =\frac{7 \pm \sqrt{49-12}}{2} \\
& =\frac{7 \pm \sqrt{37}}{2}=\frac{7 \pm 6.08}{2}
\end{aligned}
$$

Taking positive sign,

$$
x=\frac{7+6.08}{2}=6.541
$$

Taking negative sign,

$$
x=\frac{7-6.08}{2}=0.458
$$

Solution 2.
(a) Let $p(x)=6 x^{3}+17 x^{2}+4 x-12$

$$
\begin{aligned}
\because \quad p(-2) & =6 \times(-2)^{3}+17 \times(-2)^{2}+4(-2)-12 \\
& =6 \times(-8)+17 \times 4-8-12 \\
& =-48+68-20 \\
& =-68+68=0
\end{aligned}
$$

$\therefore(x+2)$ is a factor of $p(x)$
Dividing $p(x)$ by $(x+2)$, see get

$$
x + 2 \longdiv { 6 x ^ { 3 } + 1 7 x ^ { 2 } + 4 x - 1 2 (} 6 x ^ { 2 } + 5 x - 6
$$

Hence,

$$
x=6.54 \text { and } 0.46
$$

Ans.

$$
A=\left[\begin{array}{ll}
x & 3 \\
y & 3
\end{array}\right]
$$

Also,

$$
A^{2}=3 I
$$

$\Rightarrow \quad\left[\begin{array}{ll}x & 3 \\ y & 3\end{array}\right]\left[\begin{array}{ll}x & 3 \\ y & 3\end{array}\right]=3\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\Rightarrow\left[\begin{array}{ll}
x^{2}+3 y & 3 x+9 \\
x y+3 y & 3 y+9
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]
$$

Comparing both sides, we get

$$
\begin{aligned}
& 3 x+9 & =0 \\
\Rightarrow & x & =-\frac{9}{3}=-3
\end{aligned}
$$

$$
\text { and } \quad 3 y+9=3
$$

$$
\Rightarrow \quad 3 y=3-9=-6
$$

$$
\Rightarrow \quad y=-\frac{6}{3}=-2
$$

$$
\therefore \quad x=-3 \text { and } y=-2
$$

(c) Steps of construction:
(i) Draw $B C=4 \mathrm{~cm}$.
(ii) Make an angle of 90° at B and cut an arc of radius 3 cm on it to get point A.
(iii)Join $A C$. Thus, $\triangle A B C$ is obtained.

(iv)Draw perpendicular bisector of $A C$, which meets $A C$ at D.
(v) Taking D as centre and radius equal to $A D$ or $D C$, draw a circle. Thus, it is a required circle.
Since, $A C=5 \mathrm{~cm}$, so, $A D=2.5 \mathrm{~cm}$.

Ans.
Now for the quotient

$$
\begin{aligned}
\because \quad 6 x^{2}+5 x-6 & =6 x^{2}+9 x-4 x-6 \\
& =3 x(2 x+3)-2(2 x+3) \\
& =(3 x-2)(2 x+3)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
6 x^{3}+17 x^{2}+4 x-12 & =(x+2)\left(6 x^{2}+5 x-6\right) \\
& =(x+2)(2 x+3)(3 x-2)
\end{aligned}
$$

Ans.
(b) Given: $\frac{3 x}{5}+2<x+4 \leq \frac{x}{2}+5$

Now, $\quad \frac{3 x}{5}+2<x+4$
$\Rightarrow \quad \frac{3 x}{5}-x<4-2$
$\Rightarrow \quad \frac{3 x-5 x}{5}<2$
$\Rightarrow \quad-2 x<10$
$\Rightarrow \quad x>-\frac{10}{2}$
$\Rightarrow \quad x>-5$
And, $x+4 \leq \frac{x}{2}+5$
$\Rightarrow \quad x-\frac{x}{2} \leq 5-4$
$\Rightarrow \quad \frac{x}{2} \leq 1$
$\Rightarrow \quad x \leq 2$
Hence, $\quad-5<x \leq 2$
$\begin{array}{ccccccccc}\text { Solution } \\ \underset{-6}{ } & -\infty & -4 & -3 & -2 & -1 & 0 & 1 & 2\end{array}$
(c)

We have, maximum frequency $=18$
$\therefore \quad$ Modal class $=5000-6000$
Join $A C$ and $B D$ and draw a perpendicular from point G to X-axis at 5450 .
Hence, estimated mode is 5450 .
Solution 3.
(a) Given: $\quad A C=B D$ and $\angle A O C=72^{\circ}$

(i) \because Angle subtended by an arc at the centre is twice the angle subtended by the same arc at any point on the remaining part of the circle.

$$
\begin{array}{rlrl}
\therefore & \angle A O C & =2 \angle A B C \\
\Rightarrow & & \angle A B C & =\frac{1}{2} \angle A O C \\
& & =\frac{1}{2} \times 72^{\circ}=36^{\circ}
\end{array}
$$

Ans.
(ii) Since $B D=A C$ and equal chords subtend equal angles at the centre.
So,

$$
\angle B O D=\angle A O C=72^{\circ}
$$

and, $\quad \angle B A D=\frac{1}{2} \angle B O D$

$$
=\frac{1}{2} \times 72^{\circ}=36^{\circ}
$$

Ans.
(iii) In $\triangle A B D$,
$\angle B A D+\angle A B D+\angle A D B=180^{\circ}$
$\Rightarrow 36^{\circ}+\angle A B D+90^{\circ}=180^{\circ}$
$[\because \angle A D B$ is in semicircle and angles of a
triangle adds upto 180°]
$\Rightarrow \quad \angle A B D=180^{\circ}-126^{\circ}$

$$
=54^{\circ}
$$

Ans.
(b) To prove:
$\frac{\sin A}{1+\cot A}-\frac{\cos A}{1+\tan A}=\sin A-\cos A$
Taking,

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\sin A}{1+\cot A}-\frac{\cos A}{1+\tan A} \\
& =\frac{\sin A \times \sin A}{\sin A+\cos A}
\end{aligned}
$$

$$
-\frac{\cos A \times \cos A}{\cos A+\sin A}
$$

$$
=\frac{\sin ^{2} A-\cos ^{2} A}{\sin A+\cos A}
$$

$$
=\frac{(\sin A-\cos A)(\sin A+\cos A)}{(\sin A+\cos A)}
$$

$$
\left[\because a^{2}-b^{2}=(a-b)(a+b)\right]
$$

$$
=\sin A-\cos A=\text { R.H.S. }
$$

Hence Proved.
(c) Given points are $P(5,3)$ and $Q(-5,3)$

Let the coordinates of the point where this line meets y-axis be $A(0, y)$ and the ratio be $m: n$. Using section formula, we have

Hence, the required ratio is $1: 1$ and the point of intersection is $(0,3)$.

Ans.

$$
\begin{aligned}
& (x, y)=\left(\frac{m x_{2}+n x_{1}}{m+n} \frac{m y_{2}+n y_{1}}{m+n}\right) \\
& \Rightarrow \quad 0=\frac{-5 m+5 n}{m+n} \\
& \Rightarrow \quad 0=-5 m+5 n \\
& \Rightarrow \quad 5 m=5 n \\
& \text { or } \quad m: n=5: 5=1: 1 \\
& \text { Now, } \\
& y=\frac{m \times 3+3 \times n}{m+n} \\
& =\frac{1 \times 3+1 \times 3}{1+1} \\
& =\frac{3+3}{2} \\
& =\frac{6}{2}=3
\end{aligned}
$$

Solution 4.
(a) Let the radius of each spherical marble be $r \mathrm{~cm}$.

Then, volume of 64 spherical marbles
$=$ volume of solid spherical ball

$$
\begin{aligned}
\Rightarrow & 64 \times \frac{4}{3} \pi r^{3} & =\frac{4}{3} \times \pi \times 6^{3} \\
\Rightarrow & r^{3} & =\frac{6 \times 6 \times 6}{64} \\
\Rightarrow & r^{3} & =\left(\frac{6}{4}\right)^{3} \\
\text { or } & r & =\frac{6}{4}=1.5
\end{aligned}
$$

Hence, the radius of each marble is 1.5 cm . Ans.
(b) Letters are $A, U, T, H, O, R, I, Z, E, S$.
\Rightarrow Total number of letters in the given word
$=10$.
(i) Here, vowels are A, U, O, I, E.
\Rightarrow Number of vowels $=5$
So, probability (a vowel) $=\frac{5}{10}=\frac{1}{2}$
Ans.
(ii) Letters in the given word which are in first 9 letters of english alphabets are A, I, E and H.
\Rightarrow Number of such letters $=4$
$\therefore \quad$ Probability $=\frac{4}{10}=\frac{2}{5}$
Ans.
(iii) Letters in the given word which are in last 9 letters of english alphabets are U, T, R, Z and S.
\Rightarrow Number of such letters $=5$
$\therefore \quad$ Probability $=\frac{5}{10}=\frac{1}{2}$
(c) (i) Cost of medicines $=₹ 950$

GST on medicines $=5 \%$ of 950

$$
\begin{aligned}
& =\frac{5}{100} \times 950 \\
& =₹ 47.50
\end{aligned}
$$

Cost of a pair of shoes $=₹ 3000$

$$
\text { GST on shoes }=18 \% \text { of } ₹ 3000
$$

Cost of laptop bag $=₹ 1000$
Discount on bag $=30 \%$ of 1000
Ans.

$$
=\frac{18}{100} \times 3000
$$

$$
\text { = ₹ } 540
$$

$$
\begin{aligned}
& =\frac{30}{100} \times 1000 \\
& =₹ 300
\end{aligned}
$$

\therefore Cost of laptop bag after discount

$$
\begin{aligned}
& =₹(1000-300) \\
& =₹ 700
\end{aligned}
$$

GST on laptop bag $=18 \%$ of ₹ 700

$$
\begin{aligned}
& =\frac{18}{100} \times 700 \\
& =₹ 126
\end{aligned}
$$

\therefore Total GST on all items

$$
\begin{aligned}
& =₹(47.50+540+126) \\
& =₹ 713.50 \quad \text { Ans. }
\end{aligned}
$$

(ii) Total bill including GST $=$ cost of (medicines + shoes + laptop bag) + Total GST on all items.

$$
\begin{aligned}
& =₹(950+3000+700) \\
& \quad+₹ 713.50 \\
& =₹(4650+713.50) \\
& =₹ 5363.50 \quad \text { Ans. }
\end{aligned}
$$

SECTION—B

Solution 5.
(a) (i) Total number of shares $=500$

Nominal value of each share $=₹ 120$
And, \quad Dividend $=15 \%$
Total value of shares $=₹(500 \times 120)$
= ₹ 60,000

So, \quad Total dividend $=15 \%$ of ₹ 60,000

$$
\begin{aligned}
& =\frac{15}{100} \times 60,000 \\
& =₹ 9,000
\end{aligned}
$$

Ans.
(ii) Annual income of 80 shares

$$
\begin{aligned}
& =15 \% \text { of }(80 \times 120) \\
& =\frac{15}{100} \times 9600 \\
& =₹ 1,440
\end{aligned}
$$

Ans.
Let the market value of each share be ₹ x.

$$
\text { So, } \begin{array}{rlrl}
& \text { So of } 80 x & =1440 \\
\Rightarrow & & \frac{10}{100} \times 80 x & =1440 \\
\Rightarrow & x & =\frac{1440 \times 10}{80} \\
& x & =180
\end{array}
$$

So, the market value of each share is ₹ 180 . Ans.
(b)

Marks x_{i}	No. of students f_{i}	$f_{i} x_{i}$
5	3	15
10	7	70
15	f	$15 f$
20	9	180
25	6	150
	$\sum f_{i}=25+f$	$\sum f_{i} x_{i}=$
		$415+15 f$

We know, $\begin{aligned} \text { mean } & =\frac{\sum_{i} x_{i}}{\sum f_{i}} & & =\left[\begin{array}{ccc}9+24+18 & 0-12-8 \\ 20+38-4 & 1-20+2\end{array}\right] \\ \Rightarrow & 16 & =\frac{415+15 f}{25+f} & \end{aligned}$
(b) Given : $A B=9 \mathrm{~cm}, P A=7.5 \mathrm{~cm}$ and $P C=5 \mathrm{~cm}$

Ans.
(c) Given:
\therefore

$$
a_{4}=10, a_{6}=40, a_{n}=640
$$

and

$$
\begin{equation*}
a r^{3}=10 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
a r^{5}=40 \tag{ii}
\end{equation*}
$$

On dividing (ii) by (i),

$$
\begin{array}{rlrl}
& & \frac{a r^{5}}{a r^{3}} & =\frac{40}{10} \\
\Rightarrow & r^{2} & =4 \\
\Rightarrow \quad & r & =2 \quad[\because r \text { is positive }]
\end{array}
$$

Putting $r=2$ in equation (i), we get

Hence, $a=\frac{5}{4}, r=2$ and $n=10$
Solution 6.
(a) Given:

$$
A=\left[\begin{array}{ll}
3 & 0 \\
5 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{rr}
-4 & 2 \\
1 & 0
\end{array}\right]
$$

Now, $A^{2}-2 A B+B^{2}=\left[\begin{array}{ll}3 & 0 \\ 5 & 1\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 5 & 1\end{array}\right]$

$$
-2\left[\begin{array}{ll}
3 & 0 \\
5 & 1
\end{array}\right]\left[\begin{array}{rr}
-4 & 2 \\
1 & 0
\end{array}\right]+\left[\begin{array}{rr}
-4 & 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
-4 & 2 \\
1 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
9+0 & 0+0 \\
15+5 & 0+1
\end{array}\right]-2\left[\begin{array}{cc}
-12+0 & 6+0 \\
-20+1 & 10+0
\end{array}\right]
$$

$$
+\left[\begin{array}{rr}
16+2 & -8+0 \\
-4+0 & 2+0
\end{array}\right]
$$

$=\left[\begin{array}{cc}9 & 0 \\ 20 & 1\end{array}\right]-2\left[\begin{array}{cc}-12 & 6 \\ -19 & 10\end{array}\right]+\left[\begin{array}{rr}18 & -8 \\ -4 & 2\end{array}\right]$
$=\left[\begin{array}{cc}9 & 0 \\ 20 & 1\end{array}\right]+\left[\begin{array}{ll}24 & -12 \\ 38 & -20\end{array}\right]+\left[\begin{array}{cc}18 & -8 \\ -4 & 2\end{array}\right]$

(i) In $\triangle P A B$ and $\triangle P C D$,

$$
\angle A B C=\angle A D C
$$

[Angles made by same arc $A C$ or angles in the some segment are equal] $\angle B A D=\angle B C D$
[Angles made by same arc $B D$] $\therefore \quad \triangle P A B \sim \triangle P C D$
[By AA similarity axiom]
Hence Proved.
(ii) \because Ratio of corresponding sides of similar triangles is equal.

$$
\begin{array}{ll}
\therefore & \frac{A B}{C D}=\frac{P A}{P C}=\frac{P B}{P D} \\
\Rightarrow & \frac{9}{C D}=\frac{7.5}{5}=\frac{P B}{P D}
\end{array}
$$

$$
\Rightarrow \quad C D=\frac{9 \times 5}{7.5}=6 \mathrm{~cm}
$$

Ans
(iii) $\quad \frac{\operatorname{ar}(\triangle P A B)}{\operatorname{ar}(\triangle P C D)}=\frac{A B^{2}}{C D^{2}}$

$$
=\frac{9^{2}}{6^{2}}=\frac{81}{36}=\frac{9}{4}
$$

Ans.
(c) Let $A B$ be the cliff and $C D$ be the tower.

$$
\begin{aligned}
& a \times 2^{3}=10 \\
& \Rightarrow \quad a=\frac{10}{8}=\frac{5}{4} \\
& \text { Now, } \quad a_{n}=640 \\
& \Rightarrow \quad a r^{n-1}=640 \\
& \Rightarrow \quad \frac{5}{4} \times(2)^{n-1}=640 \\
& \Rightarrow \quad 2^{n-1}=\frac{640 \times 4}{5}=128 \times 4 \\
& \Rightarrow \quad 2^{n-1}=2^{9} \\
& \therefore \quad n-1=9 \\
& \therefore \quad n=9+1=10
\end{aligned}
$$

Also, let $D B=C E=x \mathrm{~m}$ and $A B=h \mathrm{~m}$
(i) In $\triangle A B D$,

$$
\begin{align*}
\tan 60^{\circ} & =\frac{A B}{D B} \\
\sqrt{3} & =\frac{h}{x} \\
h & =x \sqrt{3} \tag{i}
\end{align*}
$$

And, in $\triangle A C E$,

$$
\begin{align*}
\tan 45^{\circ} & =\frac{A E}{C E} \\
\Rightarrow \quad 1 & =\frac{A B-B E}{x} \\
\Rightarrow \quad 1 & =\frac{h-20}{x} \\
x & =h-20 \tag{ii}
\end{align*}
$$

Putting the value of x in equation (i), we get

$$
\begin{aligned}
& h=(h-20) \sqrt{3} \\
& \Rightarrow \quad h=\sqrt{3} h-20 \sqrt{3} \\
& \Rightarrow \quad \sqrt{3} h-h=20 \sqrt{3} \\
& \Rightarrow \quad h(\sqrt{3}-1)=20 \sqrt{3} \\
& \Rightarrow \quad h=\frac{20 \sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& =\frac{20 \sqrt{3}(\sqrt{3}+1)}{3-1} \\
& =10(3+\sqrt{3})=10(3+1.732) \\
& =10 \times 4.732 \\
& =47.32 \mathrm{~m}
\end{aligned}
$$

Hence, the height of cliff is 47.32 m .
Ans.
(ii) Putting the value of h in equation (ii), we get

$$
\begin{aligned}
x & =h-20=47.32-20 \\
& =27.32
\end{aligned}
$$

Hence, the distance between the cliff and the tower is 27.32 m .

Ans.
Solution 7.
(a) Given lines are,

$$
5 x-3 y+2=0
$$

and $\quad 6 x-p y+7=0$
Now, $\quad 5 x-3 y+2=0$

$$
\begin{array}{rlrl}
\Rightarrow & p y & =6 x+7 \\
\Rightarrow & y & =\frac{6}{p} x+\frac{7}{p} \\
\therefore & & \text { Slope }\left(m_{2}\right) & =\frac{6}{p}
\end{array}
$$

Since, given lines are perpendicular to each other,
So,

$$
m_{1} \times m_{2}=-1
$$

$$
\begin{aligned}
\Rightarrow & \frac{5}{3} \times \frac{6}{p} & =-1 \\
\Rightarrow & p & =-10
\end{aligned}
$$

Now, slope $\left(m_{2}\right)=\frac{6}{p}=\frac{6}{-10}=-\frac{3}{5}$
\because Slopes of parallel lines are equal.
So, slope of required line is $\left(-\frac{3}{5}\right)$.
Now, equation of required line is

$$
\begin{aligned}
& \frac{y-y_{1}}{x-x_{1}}=m \\
& \Rightarrow \quad \frac{y+1}{x+2}=-\frac{3}{5} \\
& \Rightarrow \quad 5 y+5=-3 x-6 \\
& \Rightarrow \quad 3 x+5 y+5+6=0 \\
& \Rightarrow \quad 3 x+5 y+11=0
\end{aligned}
$$

(b) Given: $\frac{x^{2}+2 x}{2 x+4}=\frac{y^{2}+3 y}{3 y+9}$

Using componendo and dividendo,

$$
\begin{aligned}
& & \frac{x^{2}+2 x+2 x+4}{x^{2}+2 x-2 x-4} & =\frac{y^{2}+3 y+3 y+9}{y^{2}+3 y-3 y-9} \\
& \Rightarrow & \frac{x^{2}+4 x+4}{x^{2}-4} & =\frac{y^{2}+6 y+9}{y^{2}-9} \\
& \Rightarrow & \frac{(x+2)^{2}}{(x-2)(x+2)} & =\frac{(y+3)^{2}}{(y-3)(y+3)} \\
& \Rightarrow & \frac{x+2}{x-2} & =\frac{y+3}{y-3}
\end{aligned}
$$

Again, using componendo and dividendo

$$
\begin{aligned}
& & \frac{x+2+x-2}{x+2-x+2} & =\frac{y+3+y-3}{y+3-y+3} \\
\Rightarrow & & \frac{2 x}{4} & =\frac{2 y}{6} \\
\Rightarrow & & \frac{x}{y} & =\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

Hence, $x: y=2: 3$
(c) Given: $\angle B C Q=55^{\circ}$ and $\angle B A P=60^{\circ}$

(i)
$\angle O A P=90^{\circ}[\because$ Tangent is \perp to radius]
$\Rightarrow \angle O A B+\angle P A B=90^{\circ}$
$\Rightarrow \quad \angle O A B+60^{\circ}=90^{\circ}$
$\Rightarrow \quad \angle O A B=90^{\circ}-60^{\circ}=30^{\circ}$
Now, in $\triangle A O B$

$$
O A=O B
$$

[Radii of same circle]

$$
\angle O B A=\angle O A B=30^{\circ}
$$

[Equal angles opposite to equal sides]
Now, $\quad \angle O C Q=90^{\circ} \quad[\because$ Tangent \perp radius $]$
$\Rightarrow \angle O C B+\angle B C Q=90^{\circ}$
$\Rightarrow \quad \angle O C B+55^{\circ}=90^{\circ}$
$\Rightarrow \quad \angle O C B=90^{\circ}-55^{\circ}=35^{\circ}$
In $\triangle B O C$,

$$
O C=O B \text { [Radii of same circle }]
$$

$\Rightarrow \quad \angle O B C=\angle O C B=35^{\circ}$
Ans.
(ii) We know, angle subtended by an arc at the centre is double the angle subtended on the remaining part of the circle.
$\therefore \quad \angle A O C=2 \angle A B C$

$$
\begin{aligned}
& =2(\angle O B A+\angle O B C) \\
& =2\left(30^{\circ}+35^{\circ}\right) \\
& =2 \times 65^{\circ}=130^{\circ}
\end{aligned}
$$

Ans.
(iii) In quad. $A O C T$,
$\angle A T C+\angle O A T+\angle A O C+\angle O C T=360^{\circ}$
$\Rightarrow \angle A T C+90^{\circ}+130^{\circ}+90^{\circ}=360^{\circ}$

$$
\left[\because \angle O A T=\angle O C T=90^{\circ}\right]
$$

$\Rightarrow \quad \angle A T C=360^{\circ}-310^{\circ}=50^{\circ} \quad$ Ans.
Solution 8.
(a) Let k be the required term to be added.

So, $p(x)=2 x^{3}-3 x^{2}-8 x+k$
$\because p(x)$ leaves remainder 10 when divided by $2 x+1$,

$$
\begin{array}{ll}
\therefore & p\left(-\frac{1}{2}\right)=10 \\
\Rightarrow & 2 \times\left(-\frac{1}{2}\right)^{3}-3 \times\left(-\frac{1}{2}\right)^{2}-8 \times\left(-\frac{1}{2}\right)+k=10 \\
\Rightarrow & 2 \times\left(-\frac{1}{8}\right)-3 \times \frac{1}{4}+4+k=10 \\
\Rightarrow & -\frac{1}{4}-\frac{3}{4}+4+k=10 \\
\Rightarrow & k=10-4+\frac{1+3}{4} \\
\Rightarrow & k=6+1=7
\end{array}
$$

$$
\therefore \quad k=7
$$

Ans.
(b) Here, $P=₹ 750, n=2$ years $=24$ months and M.V. = ₹ 19125

We know, \quad M.V. $=P \times n+\frac{P \times n(n+1)}{2 \times 12} \times \frac{r}{100}$
$\Rightarrow \quad 19125=750 \times 24$
$+\frac{750 \times 24(24+1)}{2 \times 12} \times \frac{r}{100}$
$\Rightarrow \quad 19125=18000+750 \times 25 \times \frac{r}{100}$
$\Rightarrow \quad 19125-18000=\frac{750 \times r}{4}$
$\Rightarrow \quad 1125=\frac{750 \times r}{4}$
$\Rightarrow \quad r=\frac{1125 \times 4}{750}=6$
Hence, the rate of interest is 6% p.a.
Ans.
(c)

Note : Instead of $1 \mathrm{~cm}=1$ unit, we have used $0.5 \mathrm{~cm}=1$ unit on both axes.
(i), (ii) and (iii) see graph.
(iv) Nonagon (irregular), polygon fish

Solution 9.
(a)

Distance in \mathbf{m}	Frequency (f)	c.f.
$12-13$	3	3
$13-14$	9	12
$14-15$	12	24
$15-16$	9	33
$16-17$	4	37
$17-18$	2	39
$18-19$	1	40

Note: Instead of $2 \mathrm{~cm}=1 \mathrm{~m}$ and $2 \mathrm{~cm}=5$ students, we have used $1 \mathrm{~cm}=1 \mathrm{~m}$ and $1 \mathrm{~cm}=5$ students on X and Y axes, respectively.
(i) Median $=\left(\frac{N}{2}\right)^{\text {th }}$ term

$$
\begin{aligned}
& =\left(\frac{40}{2}\right)^{\text {th }} \text { term } \\
& =20 \text { th term }
\end{aligned}
$$

On the graph, through a point 20 on y-axis, draw a horizontal line which meets the ogive at point A. Through A, draw a vertical line which meets the x-axis at 14.7 .
$\therefore \quad$ Median $=14.7$
(ii) Upper quartile $\left(\mathrm{Q}_{3}\right)=\left(\frac{3 \mathrm{~N}}{4}\right)^{\text {th }}$ term

$$
\begin{aligned}
& =\left(\frac{3 \times 40}{4}\right)^{\text {th }} \text { term } \\
& =30 \text { th term } \\
& =15.7
\end{aligned}
$$

Ans.
(iii) Number of students who cover more than
$16 \frac{1}{2} \mathrm{~m}=40-35=5$
Ans.
(b) Given : $\quad x=\frac{\sqrt{2 a+1}+\sqrt{2 a-1}}{\sqrt{2 a+1}-\sqrt{2 a-1}}$

Using componendo and dividendo,

$$
\begin{aligned}
& \frac{x+1}{x-1}= \frac{+\sqrt{2 a+1}-\sqrt{2 a-1}}{\sqrt{2 a+1}+\sqrt{2 a-1}} \\
&-\sqrt{2 a+1}+\sqrt{2 a-1} \\
& \Rightarrow \quad \frac{x+1}{x-1}= \\
& \Rightarrow \quad \frac{2 \sqrt{2 a+1}}{2 \sqrt{2 a-1}} \\
& \Rightarrow \quad\left(\frac{x+1}{x-1}\right)^{2}=\left(\frac{\sqrt{2 a+1}}{\sqrt{2 a-1}}\right)^{2}
\end{aligned}
$$

[Squaring on both sides]
$\Rightarrow \quad \frac{x^{2}+1+2 x}{x^{2}+1-2 x}=\frac{2 a+1}{2 a-1}$
Again, using componendo and dividendo,
$\frac{x^{2}+1+2 x+x^{2}+1-2 x}{x^{2}+1+2 x-x^{2}-1+2 x}=\frac{2 a+1+2 a-1}{2 a+1-2 a+1}$
$\Rightarrow \quad \frac{2\left(x^{2}+1\right)}{4 x}=\frac{4 a}{2}$
$\Rightarrow \quad \frac{x^{2}+1}{2 x}=2 a$
$\Rightarrow \quad x^{2}+1=4 a x$
$\Rightarrow \quad x^{2}-4 a x+1=0$
Hence Proved.
Solution 10.
(a) Let the first term of an A.P. be a and the common difference be d.

$$
\begin{align*}
\because & a_{6} & =4 a \\
\Rightarrow & a+5 d & =4 a \\
\Rightarrow & 5 d & =3 a \\
\therefore & a & =\frac{5 d}{3} \tag{i}
\end{align*}
$$

Also, $\quad S_{6}=75$
[Given]
$\Rightarrow \frac{6}{2}[2 a+(6-1) d]=75$
$\Rightarrow 3\left[2 \times \frac{5 d}{3}+5 d\right]=75$
[Using (i)]
$\Rightarrow \quad 3\left[\frac{10 d+15 d}{3}\right]=75$
$\Rightarrow \quad 25 d=75$
$\therefore \quad d=\frac{75}{25}=3$
$\therefore \quad a=\frac{5 d}{3}=\frac{5 \times 3}{3}=5$
Hence,

$$
a=5 \text { and } d=3
$$

Ans.
(b) Let the two natural numbers be x and y such that $x>y$.

ICSE Mathematics-2020

Then, $\quad x-y=7$
$\Rightarrow \quad x=7+y$
and $\quad x y=450$
$\Rightarrow \quad(7+y) y=450$
$\Rightarrow \quad y^{2}+7 y-450=0$
$\Rightarrow \quad y^{2}+25 y-18 y-450=0 \quad$ (on factorisation)
$\Rightarrow \quad y(y+25)-18(y+25)=0$
$\Rightarrow \quad(y+25)(y-18)=0$
$\Rightarrow \quad y=-25$
[Neglected]
or $\quad y=18$
$\therefore \quad y=18$
$\therefore \quad x=7+18=25$
Hence, the numbers are 25 and 18.
(c) Steps of construction:

1. Draw a circle of radius 4.5 cm .
2. Take a point A on the circle. Taking A as centre, draw an arc of radius 6 cm , which cuts circle at B.

3. Join $A B$.
(i) Draw perpendicular bisector of $A B$ which meets the circle at D and E.
Thus, $D E$ is the required locus.
(ii) Join $A D$ and draw angle bisector of $\angle D A B$ which meets the circle at C.

Thus, $A C$ is the required locus.
(iii) Length of side $C D=5 \mathrm{~cm}$.

Solution 11.
(a) Given: \quad Scale $=1: 50$
(i) Let the actual height of the building be $h \mathrm{~m}$.

$$
\begin{array}{ll}
\therefore & \frac{0.8}{h}=\frac{1}{50} \\
\Rightarrow & h=50 \times 0.8=40 \mathrm{~m} \quad \text { Ans. }
\end{array}
$$

(ii) Let the floor area of the model be $x \mathrm{~m}^{2}$.
$\therefore \quad \frac{x}{20}=\left(\frac{1}{50}\right)^{2}$
$\Rightarrow \quad \frac{x}{20}=\frac{1}{2500}$
$\Rightarrow \quad x=\frac{20}{2500} \mathrm{~m}^{2}$
$=0.008 \mathrm{~m}^{2}$ or $80 \mathrm{~cm}^{2} \quad$ Ans.
(b) Given : Height of cylinder $(h)=28 \mathrm{~cm}$

Diameter of cylinder $=6 \mathrm{~cm}$
\Rightarrow Radius of cylinder $(r)=\frac{6}{2}=3 \mathrm{~cm}$
Also, height of cones $(H)=10.5 \mathrm{~cm}$
And, diameter of cones $=6 \mathrm{~cm}$
\Rightarrow Radius of cones $(R)=\frac{6}{2}=3 \mathrm{~cm}$
Now, volume of solid cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times 3^{2} \times 28 \\
& =\frac{22}{7} \times 9 \times 28 \\
& =792 \mathrm{~cm}^{3}
\end{aligned}
$$

And, volume of two cones

$$
\begin{aligned}
& =2 \times \frac{1}{3} \pi R^{2} H \\
& =2 \times \frac{1}{3} \times \frac{22}{7} \times 3^{2} \times 10.5 \\
& =198 \mathrm{~cm}^{3}
\end{aligned}
$$

So, volume of the remaining solid

$$
\begin{aligned}
& =(792-198) \mathrm{cm}^{3} \\
& =594 \mathrm{~cm}^{3}
\end{aligned}
$$

Ans.
(c) To prove :

$$
\left(\frac{1-\tan \theta}{1-\cot \theta}\right)^{2}=\tan ^{2} \theta
$$

Taking

$$
\begin{aligned}
& \text { L.H.S. }=\left(\frac{1-\tan \theta}{1-\cot \theta}\right)^{2} \\
& =\left(\frac{1-\tan \theta}{1-\frac{1}{\tan \theta}}\right)^{2} \\
& =\left(\frac{\frac{1-\tan \theta}{\tan \theta-1}}{\tan \theta}\right)^{2} \\
& =\left(\frac{-\tan \theta(1-\tan \theta)}{1-\tan \theta}\right)^{2} \\
& =(-\tan \theta)^{2} \\
& =\tan ^{2} \theta \\
& =\text { R.H.S. Hence Proved. }
\end{aligned}
$$

Questions

SECTION—A (40 Marks)

(Attempt all questions from this Section)
Question 1.
(a) Solve the following inequation and write down the solution set :

$$
11 x-4<15 x+4 \leq 13 x+14, x \in W
$$

Represent the solution on a real number line.
(b) A man invests ₹ 4500 in shares of a company which is paying 7.5% dividend. If $₹ 100$ shares are available at a discount of 10%.
[3]
Find:
(i) Number of shares he purchases.
(ii) His annual income.
(c) In a class of 40 students, marks obtained by the students in a class test (out of 10) are given below :
[4]

Marks	1	2	3	4	5	6	7	8	9	10
Number of Students	1	2	3	3	6	10	5	4	3	3

Calculate the following for the given distribution :
(i) Median
(ii) Mode

Question 2.

(a) Using the factor theorem, show that $(x-2)$ is a factor of $x^{3}+x^{2}-4 x-4$. Hence factorise the polynomial completely.
(b) Prove that:
$(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)(\tan \theta+\cot \theta)=1$
(c) In an Arithmetic Progression (A.P.) the fourth and sixth terms are 8 and 14 respectively. Find the :
(i) first term
(ii) common difference
(iii) sum of the first 20 terms

Question 3.
(a) Simplify:
$\sin A\left[\begin{array}{rr}\sin A & -\cos A \\ \cos A & \sin A\end{array}\right]+\cos A\left[\begin{array}{rr}\cos A & \sin A \\ -\sin A & \cos A\end{array}\right]$
(b) M and N are two points on the X-axis and Y-axis respectively. $P(3,2)$ divides the line segment $M N$ in the ratio 2 : 3 .

Find:
(i) the coordinates of M and N
(ii) slope of the line MN.
(c) A solid metallic sphere of radius 6 cm is melted and made into a solid cylinder of height 32 cm . Find the :
(i) radius of the cylinder
(ii) curved surface area of the cylinder
(Take $\pi=3.1$)

Question 4.

(a) The following numbers, $K+3, K+2,3 K-7$ and $2 K-$ 3 are in proportion. Find K.
(b) Solve for x the quadratic equation $x^{2}-4 x-8=0$.

Give your answer correct to three significant figures.
(c) Use ruler and compass only for answering this question.
Draw a circle of radius 4 cm . Mark the centre as O. Mark a point P outside the circle at a distance of 7 cm from the centre. Construct two tangents to the circle from the external point P.
Measure and write down the length of any one tangent.

SECTION—B (40 Marks)
 (Attempt any four questions from this Section)

Question 5.

(a) There are 25 discs numbered 1 to 25. They are put in a closed box and shaken thoroughly. A disc is drawn at random from the box.

Find the probability that the number on the disc is :
(i) an odd number
(ii) divisible by 2 and 3 both
(iii) a number less than 16 .
(b) Rekha opened a recurring deposit account for 20 months. The rate of interest is 9% per annum and Rekha receives ₹ 441 as interest at the time of maturity. Find the amount Rekha deposited each month.
(c) Use a graph sheet for this question.

Take $1 \mathrm{~cm}=1$ unit along both X - and Y-axis.
[4]
(i) Plot the following points: $A(0,5), B(3,0), C(1,0)$ and $D(1,-5)$
(ii) Reflect the points B, C and D on the Y axis and name them as B^{\prime}, C^{\prime} and D^{\prime} respectively.
(iii) Write down the coordinates of B^{\prime}, C^{\prime} and D^{\prime}.
(iv) Join the points $A, B, C, D, D^{\prime}, C^{\prime}, B^{\prime}, A$ in order and give a name to the closed figure $A B C D D^{\prime} C^{\prime} B^{\prime}$.

Question 6.

(a) In the given figure, $\angle P Q R=\angle P S T=90^{\circ}, P Q=5 \mathrm{~cm}$ and $P S=2 \mathrm{~cm}$.
[3]
(i) Prove that $\triangle P Q R \sim \triangle P S T$.
(ii) Find-Area of $\triangle P Q R$: Area of quadrilateral $S R Q T$.

(b) The first and last term of a Geometrical Progression (G.P.) are 3 and 96 respectively. If the common ratio is 2, find:
(i) ' n ' the number of terms of the G.P.
(ii) Sum of the n terms.
(c) A hemispherical and a conical hole is scooped out of a solid wooden cylinder. Find the volume of the remaining solid where the measurements are as follows :

The height of the solid cylinder is 7 cm , radius of each of hemisphere, cone and cylinder is 3 cm . Height of cone is 3 cm .
Give your answer correct to the nearest whole number. (Take $\pi=\frac{22}{7}$)

Question 7.

(a) In the given figure $A C$ is a tangent to the circle with centre O.

If $\angle A D B=55^{\circ}$, find x and y. Give reasons for your answer.

(b) The model of a building is constructed with the scale factor 1 : 30 .
(i) If the height of the model is 80 cm , find the actual height of the building in meters.
(ii) If the actual volume of a tank at the top of the building is $27 \mathrm{~m}^{3}$, find the volume of the tank on the top of the model.
 unit matrix of order 2×2.
(i) State the order of matrix M.
(ii) Find the matrix M.

Question 8.
(a) The sum of the first three terms of an Arithmetic Progression (A.P.) is 42 and the product of the first and third term is 52. Find the first term and the common difference.
(b) The vertices of a $\triangle A B C$ are $A(3,8), B(-1,2)$ and $C(6,-6)$. Find :
(i) Slope of BC.
(ii) Equation of a line perpendicular to $B C$ and passing through A.
(c) Using ruler and a compass only construct a semicircle with diameter $B C=7 \mathrm{~cm}$. Locate a point A on the circumference of the semicircle such that A is equidistant from B and C. Complete the cyclic quadrilateral $A B C D$, such that D is equidistant from $A B$ and $B C$. Measure $\angle A D C$ and write it down. [4]
Question 9.
(a) The data on the number of patients attending a hospital in a month are given below. Find the average (mean) number of patients attending the hospital in a month by using the shortcut method.

Take the assumed mean as 45. Give your answer correct to 2 decimal places.

Number of patients	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Number of Days	5	2	7	9	2	5

(b) Using properties of proportion solve for x, given

$$
\begin{equation*}
\frac{\sqrt{5 x}+\sqrt{2 x-6}}{\sqrt{5 x}-\sqrt{2 x-6}}=4 \tag{3}
\end{equation*}
$$

(c) Sachin invests ₹ 8500 in 10% ₹ 100 shares at ₹ 170 . He sells the shares when the price of each share rises by ₹ 30 . He invests the proceeds in 12% ₹ 100 shares at $₹ 125$. Find :
(i) the sale proceeds.
(ii) the number of ₹ 125 shares he buys.
(iii) the change in his annual income.

Question 10.

(a) Use graph paper for this question.

The marks obtained by 120 students in an English test are given below :

Marks	Number of students
$0-10$	5
$10-20$	9
$20-30$	16
$30-40$	22
$40-50$	26
$50-60$	18
$60-70$	11
$70-80$	6
$80-90$	4
$90-100$	3

Draw the ogive and hence, estimate :
(i) the median marks.
(ii) the number of students who did not pass test if the [3] pass percentage was 50.
(iii) the upper quartile marks.
(b) A man observes the angle of elevation of the top of the tower to be 45°. He walks towards it in a horizontal line through its base. On covering 20 m the angle of elevation changes to 60°. Find the height of the tower correct to 2 significant figures.
Question 11.
(a) Using the Remainder Theorem, find the remainders obtained when $x^{3}+(k x+8) x+k$ is divided by $x+1$ and $x-2$.
Hence find k if the sum of the two remainders is 1. [3]
(b) The product of two consecutive natural numbers which are multiples of 3 is equal to 810. Find the two numbers.
(c) In the given figure, $A B C D E$ is a pentagon inscribed in a circle such that $A C$ is a diameter and side $B C \| A E$. If $\angle B A C=50^{\circ}$, find giving reasons :
(i) $\angle A C B$
(ii) $\angle E D C$
(iii) $\angle B E C$

Hence, prove that $B E$ is also a diameter.

ANSWERS

SECTION—A

Solution 1.
(a) Given, $11 x-4<15 x+4 \leq 13 x+14, x \in W$.
$\therefore \quad 11 x-4<15 x+4$ and $15 x+4 \leq 13 x+14$
$\Rightarrow 11 x-15 x<4+4$ and $15 x-13 x \leq 14-4$
$\Rightarrow \quad-4 x<8$ and $2 x \leq 10$
$\Rightarrow \quad \frac{-4 x}{-4}>\frac{8}{-4} \quad$ and $\quad \frac{2 x}{2} \leq \frac{10}{2}$
$\Rightarrow \quad x>-2$ and $x \leq 5$
$\therefore \quad-2<x \leq 5$
$\therefore \quad$ Solution set $(W)=\{0,1,2,3,4,5\}$

(b) Given, Investment $=₹ 4500$ Rate of dividend $=7.5 \%$
Nominal value $=₹ 100$, Discount $=10 \%$
$\therefore \quad$ Market value $=₹\left(100-\frac{10}{100} \times 100\right)=₹ 90$
(i) Number of shares purchased

$$
\begin{aligned}
& =\frac{\text { Investment }}{\text { Market Value }} \\
& =\frac{4500}{90}=₹ 50
\end{aligned}
$$

Ans.

ICSE Mathematics-2019
(ii) Dividend per share $=\frac{7.5}{100} \times 100=₹ 7.50$
$\therefore \quad$ Annual income $=$ Dividend per share \times Number of shares

$$
\begin{aligned}
& =7.50 \times 50 \\
& =₹ 375
\end{aligned}
$$

Ans.
(c)

Marks	Number of Students	Cumulative Frequency
1	1	1
2	2	3
3	3	6
4	3	9
5	6	15
6	10	25
7	5	30
8	3	34
9	3	37
10	$n=40$	40

Here, $n=40$ (even)
(i) Median

$$
\begin{aligned}
& =\frac{\frac{n \text {th }}{2} \text { observation }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { observation }}{2} \\
& =\frac{20^{\text {th }} \text { observation }+21^{\text {st }} \text { observation }}{2} \\
& =\frac{6+6}{2}=6
\end{aligned}
$$

(ii) \because The highest frequency is 10 .
\therefore Mode $=6$
Ans.

Ans.
Solution 2.
(a) Let

$$
f(x)=x^{3}+x^{2}-4 x-4
$$

If $(x-2)$ is a factor of $f(x)$, then

$$
f(2)=0
$$

Now,

$$
\begin{aligned}
f(2) & =2^{3}+2^{2}-4 \times 2-4 \\
& =8+4-8-4 \\
& =0
\end{aligned}
$$

$\therefore(x-2)$ is a factor of $f(x)$.

$$
\begin{array}{r}
\frac{x^{2}+3 x+2}{x-2) x^{3}+x^{2}-4 x-4} \\
x^{3}-2 x^{2} \\
=+ \\
3 x^{2}-4 x \\
3 x^{2}+6 x \\
\frac{-}{+} \\
\frac{2 x-4}{\times+}
\end{array}
$$

$$
\text { Now, } \begin{aligned}
x^{2}+3 x+2 & =x^{2}+2 x+x+2 \\
& =x(x+2)+1(x+2) \\
& =(x+2)(x+1) \\
\therefore \quad & f(x)
\end{aligned}
$$

(b) To prove:
$(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)(\tan \theta+\cot \theta)=1$
L.H.S. $=(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)$
$(\tan \theta+\cot \theta)$
$=\left(\frac{1}{\sin \theta}-\sin \theta\right)\left(\frac{1}{\cos \theta}-\cos \theta\right)\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)$
$=\left(\frac{1-\sin ^{2} \theta}{\sin \theta}\right)\left(\frac{1-\cos ^{2} \theta}{\cos \theta}\right)\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}\right)$
$=\frac{\cos ^{2} \theta}{\sin \theta} \times \frac{\sin ^{2} \theta}{\cos \theta} \times \frac{1}{\sin \theta \cos \theta}$
$=\frac{\cos ^{2} \theta}{\cos ^{2} \theta} \times \frac{\sin ^{2} \theta}{\sin ^{2} \theta}$
$=1=$ R.H.S.
Hence Proved.
(c) Let a and d be the first term and common difference of the given A.P. respectively
Then,

$$
\begin{equation*}
a_{4}=8 \text { and } a_{6}=14 \tag{i}
\end{equation*}
$$

$\Rightarrow \quad a+3 d=8$
and $\quad a+5 d=14$
Subtracting equation (i) from (ii), we get

$$
\begin{array}{rlrl}
& & 2 d & =6 \tag{ii}\\
\Rightarrow & d & =3
\end{array}
$$

Putting $d=3$ in equation (i), we get

$$
a+3 \times 3=8
$$

$\Rightarrow \quad a=8-9=-1$
(i) First term $(a)=-1$.

Ans.
(ii) Common difference $(d)=3$.
(iii) Sum of first 20 terms $\left(\mathrm{S}_{20}\right)$

$$
\begin{aligned}
& \because \quad \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& \therefore \quad \mathrm{S}_{20}=\frac{20}{2}[2 \times(-1)+(20-1) \times 3] \\
& =10(-2+57) \\
& =550 \\
& \text { Ans. }
\end{aligned}
$$

Solution 3.

(a) $\sin A\left[\begin{array}{rr}\sin A & -\cos A \\ \cos A & \sin A\end{array}\right]+\cos A\left[\begin{array}{rr}\cos A & \sin A \\ -\sin A & \cos A\end{array}\right]$ $=\left[\begin{array}{cc}\sin ^{2} A & -\sin A \cos A \\ \sin A \cos A & \sin ^{2} A\end{array}\right]$ $+\left[\begin{array}{cc}\cos ^{2} A & \sin A \cos A \\ -\sin A \cos A & \cos ^{2} A\end{array}\right]$ $=\left[\begin{array}{c}\sin ^{2} A+\cos ^{2} A \\ \sin A \cos A-\sin A \cos A\end{array}\right.$ $-\sin A \cos A+\sin A \cos A$ $\sin ^{2} A+\cos ^{2} A$
$=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\because \sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1\right] \quad$ Ans.
(b) Let $P(3,2)$ divides the line segment joining $M(a, 0)$ and $N(0, b)$ in the ratio $2: 3$.
Here,

$$
\begin{aligned}
& x=3, x_{1}=a, x_{2}=0, m_{1}=2 \\
& y=2, y_{1}=0, y_{2}=b, m_{2}=3
\end{aligned}
$$

Now,

$$
x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}
$$

$\Rightarrow \quad 3=\frac{2 \times 0+3 \times a}{2+3}$
$\Rightarrow \quad 3 \times 5=0+3 a$
$\Rightarrow \quad a=\frac{15}{3}$
$\Rightarrow \quad a=5$
and

$$
y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}
$$

$\Rightarrow \quad 2=\frac{2 \times b+3 \times 0}{2+3}$
$\Rightarrow \quad 2 \times 5=2 b+0$
$\Rightarrow \quad b=\frac{10}{2}$
$\Rightarrow \quad b=5$
(i) The coordinates of $M=(a, 0)=(5,0)$.

The coordinates of $N=(0, b)=(0,5)$.
Ans.
(ii) Slope of line $M N=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-0}{0-5}=-1$.

Ans.
(c) Given, radius of sphere $\left(r_{1}\right)=6 \mathrm{~cm}$ and height of cylinder $(h)=32 \mathrm{~cm}$
\therefore Volume of sphere $\left(V_{1}\right)=\frac{4}{3} \pi r_{1}^{3}$

$$
=\frac{4}{3} \pi \times(6)^{3} \mathrm{~cm}^{3}
$$

Let radius of cylinder be r_{2}.
\therefore Volume of cylinder, $\left(V_{2}\right)=\pi r_{2}^{2} h$

$$
=\pi r_{2}^{2} \times 32 \mathrm{~cm}^{3}
$$

$$
\because \quad V_{1}=V_{2}
$$

$$
\Rightarrow \quad \frac{4}{3} \pi \times 6^{3}=\pi r_{2}^{2} \times 32
$$

$$
\Rightarrow \quad r_{2}^{2}=\frac{4 \times \pi \times 6^{3}}{3 \times \pi \times 32}
$$

$$
\Rightarrow \quad r_{2}^{2}=9
$$

$$
\Rightarrow \quad r_{2}=3
$$

(i) Radius of the cylinder, $\left(r_{2}\right)=3 \mathrm{~cm}$
(ii) Curved surface area of the cylinder

$$
\begin{aligned}
& =2 \pi r_{2} h \\
& =2 \times 3.1 \times 3 \times 32 \\
& =595.2 \mathrm{~cm}^{2}
\end{aligned}
$$

Ans.

Solution 4.
(a) Given, $K+3, K+2,3 K-7$ and $2 K-3$ are in proportion.

$$
\begin{array}{lrl}
\therefore & \frac{K+3}{K+2}=\frac{3 K-7}{2 K-3} \\
\Rightarrow & (K+2)(3 K-7)=(K+3)(2 K-3) \\
\Rightarrow & 3 K^{2}-7 K+6 K-14=2 K^{2}-3 K+6 K-9 \\
\Rightarrow & 3 K^{2}-2 K^{2}-K-3 K-14+9=0 \\
\Rightarrow & K^{2}-4 K-5=0 \\
\Rightarrow & K^{2}-5 K+K-5=0 \\
\Rightarrow & K(K-5)+1(K-5)=0 \\
\Rightarrow & (K-5)(K+1)=0 \\
\Rightarrow & K-5=0 \text { or } K+1=0 \\
\therefore & K=5 \text { or }-1 . \quad \text { Ans. }
\end{array}
$$

(b) Given quadratic equation is $x^{2}-4 x-8=0$.

Comparing it with $a x^{2}+b x+c=0$, we get

$$
\begin{aligned}
a & =1, b=-4 \text { and } c=-8 \\
\therefore \quad x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =-\frac{(-4) \pm \sqrt{(-4)^{2}-4 \times 1 \times(-8)}}{2 \times 1} \\
& =\frac{4 \pm \sqrt{16+32}}{2}=\frac{4 \pm \sqrt{48}}{2}=\frac{4 \pm 6.928}{2} \\
& =\frac{4+6.928}{2} \text { or } \frac{4-6.928}{2} \\
& =\frac{10.928}{2} \text { or } \frac{-2.928}{2} \\
& =5.464 \text { or }-1.464
\end{aligned}
$$

$\therefore x=5.464$ or -1.464 (correct to 3 significant figures).

Ans.
(c) Given, radius $=4 \mathrm{~cm}$ and $O P=7 \mathrm{~cm}$

Steps of constructions:
(i) Draw a circle of radius 4 cm with centre at O.
(ii) Draw a line $O X$ and cut-off $O P=7 \mathrm{~cm}$.

Ans. (iii) Bisect $O P$ at M.

ICSE Mathematics-2019
(iv)With M as centre, draw a circle passing through the points O and P to cut the previous circle at A and B.
(v) Join P with A and B. Hence, $A P$ and $B P$ are the required tangents.
\therefore The length of tangent, $A P=5.7 \mathrm{~cm} \quad$ Ans.

SECTION—B

Solution 5.
(a) Given, Total number of outcomes i.e., $n(S)=25$
(i) Let A be the event of getting an odd number.

$$
\left.\left.\begin{array}{lrl}
\therefore & A & =\{1,3,5,7,9,11,13,15,17,19,21,23,25\} \\
& \therefore & n(A)
\end{array}\right)=13 \begin{array}{ll}
\therefore & P(A)
\end{array}\right)=\frac{n(A)}{n(S)}=\frac{13}{25} \quad \text { Ans. }
$$

(ii) Let B be the event of getting a number divisible by 2 and 3 both.

$$
\begin{array}{lrl}
\therefore & B & =\{6,12,18,24\} \\
\therefore & n(B) & =4 \\
\therefore & P(B) & =\frac{n(B)}{n(S)}=\frac{4}{25}
\end{array}
$$

Ans.
(iii) Let C be the event of getting a number less than 16.

$$
\begin{array}{ll}
\therefore & C=\{1,2,3,4,5,6,7,8,9,10,11, \\
\therefore & n(C)=15 \\
\therefore & P(C)=\frac{n(C)}{n(S)}=\frac{15}{25}=\frac{3}{5} \quad \text { Ans. }
\end{array}
$$

(b) Given, number of months $(n)=20$

Rate of interest $(r)=9 \%$ p.a.
Interest received (I) = ₹ 441
Let the monthly deposit be ₹ P.

$$
\begin{array}{ll}
\therefore & \mathrm{I}=P \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100} \\
\Rightarrow & 441=P \times \frac{20(20+1)}{2 \times 12} \times \frac{9}{100} \\
\Rightarrow & P=\frac{441 \times 2 \times 12 \times 100}{20 \times 21 \times 9}=₹ 280
\end{array}
$$

\therefore The required monthly deposit is ₹ 280 . Ans.
(c) (i) The given points $A(0,5), B(3,0), C(1,0)$ and $D(1,-5)$ are plotted on the graph.
(ii) The points B, C and D are reflected on the Y-axis as B^{\prime}, C^{\prime} and D^{\prime} respectively.

(iii) The coordinates of

$$
B^{\prime}=(-3,0), \quad C^{\prime}=(-1,0)
$$

and $D^{\prime}=(-1,-5)$

Ans.
(iv) The name of the closed figure $A B C D D^{\prime} C^{\prime} B^{\prime}$ is arrow or heptagon.

Ans.
Solution 6.
(a) Given, $\quad \angle P Q R=\angle P S T=90^{\circ}$,

(i) In $\triangle P Q R$ and $\triangle P S T$,

$$
\begin{array}{rr}
\angle P Q R=\angle P S T=90^{\circ} & \text { (Given) } \\
\angle Q P R=\angle S P T & (\text { Common) } \\
\triangle P Q R \sim \triangle P S T & (\text { By AA axiom) } \\
& \text { Hence Proved. }
\end{array}
$$

(ii) $\frac{\text { Area of } \triangle P Q R}{\text { Area of } \triangle P S T}=\frac{P Q^{2}}{P S^{2}} \quad(\because \Delta P Q R \sim \triangle P S T)$

$$
=\frac{5^{2}}{2^{2}}=\frac{25}{4}
$$

Now,
$\frac{\text { Area of } \triangle P Q R}{\text { Area of quadrilateral } S R Q T}$

$$
\begin{gathered}
=\frac{\text { Area of } \triangle P Q R}{\text { Area of } \triangle P Q R-\text { Area of } \triangle P S T} \\
\quad=\frac{25 \mathrm{~K}}{25 \mathrm{~K}-4 \mathrm{~K}}=\frac{25}{21} \quad \text { Ans. }
\end{gathered}
$$

(b) Given, first term $(a)=3$, Last term $\left(a_{n}\right)=96$ and common ratio $(r)=2$.
(i) \because

$$
a_{n}=a r^{n-1}
$$

$$
\Rightarrow \quad 96=3 \times 2^{n-1}
$$

$$
\Rightarrow \quad \frac{96}{3}=2^{n-1}
$$

$$
\Rightarrow \quad 32=2^{n-1}
$$

$$
\Rightarrow \quad 2^{5}=2^{n-1}
$$

$$
\Rightarrow \quad n-1=5 \Rightarrow n=5+1 \Rightarrow n=6 . \quad \text { Ans. }
$$

(ii) Sum of n terms $\left(S_{n}\right)=\frac{a\left(r^{n}-1\right)}{r-1}$

$$
\begin{aligned}
& =\frac{3\left(2^{6}-1\right)}{2-1} \\
& =3 \times 63 \\
& =189
\end{aligned}
$$

Ans.
(c) Given, radius of each of hemisphere, cone and cylinder $(r)=3 \mathrm{~cm}$.

Height of cylinder $\left(h_{1}\right)=7 \mathrm{~cm}$ Height of cone $\left(h_{2}\right)=3 \mathrm{~cm}$

The volume of the remaining solid
$=$ Volume of cylinder - Volume of cone

- Volume of hemisphere
$=\pi r^{2} h_{1}-\frac{1}{3} \pi r^{2} h_{2}-\frac{2}{3} \pi r^{3}$
$=\pi r^{2}\left(h_{1}-\frac{1}{3} h_{2}-\frac{2}{3} r\right)$
$=\frac{22}{7} \times(3)^{2}\left(7-\frac{1}{3} \times 3-\frac{2}{3} \times 3\right)$
$=\frac{22}{7} \times 9 \times 4$
$=113.14 \approx 113 \mathrm{~cm}^{3}$
(Correct to the nearest whole number)

Solution 7.

(a) Given, $\angle A D B=55^{\circ}, A C$ is a tangent, $\angle A C O=x^{\circ}, \angle A O E=y^{\circ}$

In $\triangle A B D$,
$\therefore \quad \angle B A D=90^{\circ} \quad(\because$ Radius $O A$ is perpendicular to tangent $A C$)
and

$$
\angle A B D+\angle B A D+\angle A D B=180^{\circ}
$$

(Angle sum property)
$\Rightarrow \angle A B D+90^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle A B D=180^{\circ}-145^{\circ}=35^{\circ}$

\Rightarrow Volume of the model tank $=\frac{27 \mathrm{~m}^{3}}{30 \times 30 \times 30}$

$$
\begin{aligned}
& =\frac{27 \times 100 \times 100 \times 100}{30 \times 30 \times 30} \mathrm{~cm}^{3} \\
& =1000 \mathrm{~cm}^{3} \quad \text { Ans. }
\end{aligned}
$$

(c) Given, $\left[\begin{array}{rr}4 & 2 \\ -1 & 1\end{array}\right] M=6 I$

$$
\begin{aligned}
& \Rightarrow \quad\left[\begin{array}{rr}
4 & 2 \\
-1 & 1
\end{array}\right] M=6\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \Rightarrow \quad\left[\begin{array}{rr}
4 & 2 \\
-1 & 1
\end{array}\right] M=\left[\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right]
\end{aligned}
$$

(i) $(2 \times 2)(m \times n)=(2 \times 2) \rightarrow$ Order of matrix,

$$
M=2 \times 2
$$

Ans.
(ii) Let, $\quad M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
\therefore \quad\left[\begin{array}{rr}
4 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right]
$$

[using (i)]
$\Rightarrow\left[\begin{array}{cc}4 a+2 c & 4 b+2 d \\ -a+c & -b+d\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$
$\therefore \quad 4 a+2 c=6$

$$
\begin{equation*}
-a+c=0 \tag{ii}
\end{equation*}
$$

Solving equations (ii) and (iii),

$$
\begin{aligned}
4 a+2 c & =6 \\
-4 a+4 c & =0 \\
\hline 6 c & =6 \\
c & =1
\end{aligned}
$$

From equation (iii),

$$
\begin{array}{rlrl}
& & -a+1 & =0 \\
\Rightarrow & a & =1 \\
\text { and } & & 4 b+2 d & =0 \\
\Rightarrow & -b+d & =6 \tag{v}
\end{array}
$$

Solving equations (iv) and (v),

$$
\begin{aligned}
4 b+2 d & =0 \\
-4 b+4 d & =24 \\
\hline 6 d & =24 \\
\Rightarrow \quad d & =4
\end{aligned}
$$

From equation (iv),

$$
\begin{array}{rlrl}
& & -b+4 & =6 \\
\Rightarrow & -b & =2 \\
\Rightarrow & b & =-2 \\
\therefore & M & =\left[\begin{array}{rr}
1 & -2 \\
1 & 4
\end{array}\right]
\end{array}
$$

Solution 8.
(a) Let a and d be the first term and common difference respectively.

By first condition,

$$
\begin{array}{rrrl}
& a_{1}+a_{2}+a_{3}=42 \\
\Rightarrow & a+a+d+a+2 d=42 \\
\Rightarrow & 3 a+3 d=42 \\
\Rightarrow & 3(a+d)=42 \\
\Rightarrow & a+d=\frac{42}{3}=14 \\
\Rightarrow & d & =14-a \tag{i}
\end{array}
$$

By second condition,

$$
\begin{array}{rlrl}
a_{1} \times a_{3} & =52 \\
\Rightarrow & a \times(a+2 d) & =52 \\
\Rightarrow & a^{2}+2 a d & =52 \tag{ii}
\end{array}
$$

From equations (i) and (ii), we have

$$
\begin{array}{rlrl}
& & a^{2}+2 a(14-a) & =52 \\
\Rightarrow & a^{2}+28 a-2 a^{2} & =52 \\
\Rightarrow & -a^{2}+28 a & =52 \\
\Rightarrow & & a^{2}-28 a+52 & =0 \\
\Rightarrow & a^{2}-26 a-2 a+52 & =0 \\
\Rightarrow & a(a-26)-2(a-26) & =0 \\
\Rightarrow & & (a-26)(a-2) & =0 \\
\Rightarrow & a-26 & =0 \text { or } a-2=0 \\
\Rightarrow & & a & =26 \text { or } a=2 \\
& & a & =26 \text { or } 2
\end{array}
$$

From equation (i),
when $a=26, d=14-26=-12$
and when $a=2, d=14-2=12$
Ans.
Then, $d=12$ or -12
(b) Given, $A(3,8), B(-1,2)$ and $C(6,-6)$
(i) Slope of $B C\left(m_{1}\right)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-2}{6-(-1)}$

$$
=\frac{-8}{7}
$$

Ans.
(ii) Slope of a line perpendicular to $B C(m)$

$$
\begin{aligned}
& =-\frac{1}{m_{1}} \\
& =-\frac{1}{-8 / 7}=\frac{7}{8}
\end{aligned}
$$

Let the equation of the line perpendicular to $B C$ and through A be

$$
\begin{array}{rlrl}
& & y-y_{1} & =m\left(x-x_{1}\right) \\
& & y-8 & =\frac{7}{8}(x-3) \\
\Rightarrow & & 8(y-8) & =7(x-3) \\
\Rightarrow & & 8 y-64 & =7 x-21 \\
\Rightarrow & 7 x-8 y-21+64 & =0 \\
\Rightarrow & & 7 x-8 y+43 & =0
\end{array}
$$

which is the required equation.
Ans.
(c) Given, $\quad \mathrm{BC}=7 \mathrm{~cm}$

Steps of construction :

1. Draw a line $B X$ and cut off $B C=7 \mathrm{~cm}$.
2. Bisect $B C$ at O and draw a semicircle with centre at O and passing through B and C
3. Draw a perpendicular bisector of $B C$ at O which intersects the semicircle at A.
4. Join $A B$ and bisect $\angle A B C$ and the bisector cuts the semicircle at D.
5. Complete the cyclic quadrilateral $A B C D$ such that A is equidistant from $B \& C$ and D is equidistant from $A B$ and $B C$.
$\therefore \angle A D C=135^{\circ}$
Ans.
Solution 9.
(a) Given, assumed mean $(\mathrm{A})=45$.

Number of patients	Midvalue $\left(x_{i}\right)$	$\begin{gathered} d_{i}=x_{i} \\ -A \end{gathered}$	Number of days $\left(f_{i}\right)$	$f_{i} d_{i}$
10-20	15	-30	5	-150
20-30	25	-20	2	-40
30-40	35	-10	7	-70
40-50	45	0	9	0
50-60	55	10	2	20
60-70	65	20	5	100
			$\Sigma f_{i}=30$	$\begin{gathered} \\ \Sigma f_{i} d_{i} \\ =-140 \end{gathered}$
$\text { Mean }=\mathrm{A}+\frac{\sum f_{i} d_{i}}{\sum f_{i}}$				
		$\begin{aligned} & =45+ \\ & =45-4 \\ & =40.33 \\ & =40.33 \end{aligned}$	$\begin{aligned} & \left.\frac{140}{30}\right) \\ & 567 \end{aligned}$	

(Correct to 2 decimal places) Ans.
(b) Given, $\frac{\sqrt{5 x}+\sqrt{2 x-6}}{\sqrt{5 x}-\sqrt{2 x-6}}=\frac{4}{1}$

Applying componendo and dividendo,

$$
\begin{array}{rlrl}
& & \frac{(\sqrt{5 x}+\sqrt{2 x-6})+(\sqrt{5 x}-\sqrt{2 x-6})}{(\sqrt{5 x}+\sqrt{2 x-6})-(\sqrt{5 x}-\sqrt{2 x-6})}=\frac{4+1}{4-1} \\
\Rightarrow & \frac{\sqrt{5 x}+\sqrt{2 x-6}+\sqrt{5 x}-\sqrt{2 x-6}}{\sqrt{5 x}+\sqrt{2 x-6}-\sqrt{5 x}+\sqrt{2 x-6}}=\frac{5}{3} \\
\Rightarrow & \frac{2 \sqrt{5 x}}{2 \sqrt{2 x-6}}=\frac{5}{3} \\
\Rightarrow & \frac{\sqrt{5}}{\sqrt{2 x-6}}=\frac{5}{3}
\end{array}
$$

Squaring both sides, we get

$$
\begin{array}{rlrl}
& & \frac{5 x}{2 x-6} & =\frac{25}{9} \\
\Rightarrow & 25(2 x-6) & =9 \times 5 x \\
\Rightarrow & 50 x-150 & =45 x \\
\Rightarrow & 50 x-45 x & =150 \\
\Rightarrow & 5 x & =150 \\
\Rightarrow & x & =30
\end{array}
$$

Ans.
(c) Given, Investment $=₹ 8500$,

$$
\text { Rate of dividend }=10 \%
$$

Nominal Value $=₹ 100$,

$$
\text { Market Value = ₹ } 170
$$

\therefore Number of shares $=\frac{\text { Investment }}{\text { Market Value }}$

$$
=\frac{8500}{170}=50
$$

(i) Since the price of each share rises by ₹ 30 , Market Value of shares sold

$$
=₹ 170+₹ 30=₹ 200
$$

$$
\therefore \quad \text { Sale proceeds }=₹ 200 \times 50=₹ 10,000
$$

Ans.
(ii) For new shares bought,

Investment $=₹ 10,000$
Rate of dividend $=12 \%$,
Nominal Value = ₹ 100,
and \quad Market Value $=₹ 125$.
\therefore Number of shares bought

$$
\begin{aligned}
& =\frac{\text { Investment }}{\text { Market Value }} \\
& =\frac{10,000}{125} \\
& =₹ 80
\end{aligned}
$$

Ans.
(iii) Annual income from old shares
$=$ Dividend per share \times Number of shares

ICSE Mathematics-2019

$$
\begin{aligned}
& =\frac{10}{100} \times 100 \times 50 \\
& =₹ 500
\end{aligned}
$$

Annual income from new shares

$$
\begin{aligned}
& =\frac{12}{100} \times 100 \times 80 \\
& =₹ 960
\end{aligned}
$$

\therefore The change in his annual income

$$
\begin{aligned}
& =₹ 960 \text { - ₹ } 500 \\
& =₹ 460
\end{aligned}
$$

Solution 10.
(a)

Marks	Number of students	Cumulative frequency
$0-10$	5	5
$10-20$	9	14
$20-30$	16	30
$30-40$	22	52
$40-50$	26	78
$50-60$	18	96
$60-70$	11	107
$70-80$	6	113
$80-90$	4	117
$90-100$	3	120

$\therefore \quad N=120$

(i) Median marks $=\frac{N}{2}$ th observation

$$
\begin{aligned}
& =\frac{120}{2} \text { th observation } \\
& =60 \text { th observation } \\
& =43 \text { (from ogive) }
\end{aligned}
$$

(ii) Number of students who did not pass

$$
\text { = } 78 \text { (from ogive) }
$$

Ans.
(iii) Upper quartile $=\frac{3 N}{4}$ th observation

$$
\begin{aligned}
& =\frac{3 \times 120}{4} \text { th observation } \\
& =90 \text { th observation } \\
& =56 \text { (from ogive) }
\end{aligned}
$$

Ans. $C D=20 \mathrm{~m}$ be the distance he walked towards the tower

$$
\text { Let } \quad B D=y
$$

In $\triangle A B D$,

$$
\begin{array}{rlrl}
& & \tan 60^{\circ} & =\frac{x}{y} \\
\Rightarrow & \sqrt{3} & =\frac{x}{y} \\
\Rightarrow & y & =\frac{x}{\sqrt{3}} \tag{i}
\end{array}
$$

In $\triangle A B C$,

$$
\begin{array}{rlrl}
& & \tan 45^{\circ} & =\frac{x}{y+20} \\
\Rightarrow & 1 & =\frac{x}{y+20} \\
\Rightarrow & x & =y+20 \tag{ii}
\end{array}
$$

From equations (i) and (ii), we get

$$
\left.\begin{array}{rlrl}
& & x & =\frac{x}{\sqrt{3}}+20 \\
& & & \sqrt{3} x
\end{array}=x+20 \sqrt{3}\right)
$$

$$
\Rightarrow \quad x=\frac{20 \sqrt{3}}{\sqrt{3}-1}
$$

$$
\Rightarrow \quad x=\frac{20 \sqrt{3}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}
$$

$$
\text { Ans. } \quad \Rightarrow \quad x=\frac{20 \sqrt{3}(\sqrt{3}+1)}{(\sqrt{3})^{2}-(1)^{2}}
$$

$$
\begin{aligned}
& =\frac{20 \sqrt{3}(\sqrt{3}+1)}{3-1} \\
& =\frac{20 \sqrt{3}(\sqrt{3}+1)}{2} \\
& =10 \sqrt{3}(\sqrt{3}+1) \\
& =10 \sqrt{3} \times \sqrt{3}+10 \sqrt{3} \\
& =30+10 \times 1.732 \\
& =30+17.32 \\
& =47.32 \mathrm{~m}
\end{aligned}
$$

(Correct to 2 significant figures)
\therefore Height of tower is 47.32 m .

Solution 11.

(a) Let

$$
f(x)=x^{3}+(k x+8) x+k
$$

when $f(x)$ is divided by $(x+1)$ then by remainder
theorem

Remainder, $f(-1)=(-1)^{3}+\{k(-1)+8\}(-1)+k$

$$
\begin{aligned}
& =-1+(-k+8)(-1)+k \\
& =-1+k-8+k \\
& =2 k-9
\end{aligned}
$$

Ans.
\therefore

$$
x=27
$$

($\because-30$ is not a natural number)
$\therefore \quad x+3=27+3=30$
Hence, the two numbers are 27 and 30.
Ans.
(c) Given, $A C$ is diameter, $B C \| A E$, and $\angle B A C=50^{\circ}$

(i)

$$
\angle A B C=90^{\circ}
$$

(\because Angle at circumference of a semicircle) In $\triangle A B C$,
$\therefore \angle A C B+\angle B A C+\angle A B C=180^{\circ}$
(Angles sum property)
$\Rightarrow \quad \angle A C B+50^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle A C B=180^{\circ}-140^{\circ}$
$\angle A C B=40^{\circ}$
Ans.
(ii)

$$
\angle C A E=\angle A C B
$$

(Alternate angles as $B C \|$
| $A E$)

$$
=40^{\circ}
$$

$$
\therefore \quad \angle E D C+\angle C A E=180^{\circ}
$$

(Sum of opposite angles of a
cyclic quadrilateral is 180°)
$\Rightarrow \quad \angle E D C+40^{\circ}=180^{\circ}$
\Rightarrow
$\angle E D C=180^{\circ}-40^{\circ}$
$\angle E D C=140^{\circ}$
Ans.
(iii) $\quad \angle B E C=\angle B A C$
(Angles on same segment are equal)

$$
\begin{aligned}
& =50^{\circ} \\
& =\angle B A C+\angle \\
& =50^{\circ}+40^{\circ} \\
& =90^{\circ}
\end{aligned}
$$

Ans.
Now, $\quad \angle B A E=\angle B A C+\angle C A E$

We know that, if an angle of a triangle in a circle is 90°. Then, the hypotenuse must be the diameter of the circle.
Hence, $B E$ is a diameter $\quad\left(\because \angle B A E=90^{\circ}\right)$
Hence Proved.

Questions

SECTION—A (40 Marks)

(Attempt all questions from this Section)

Question 1.

(a) Find the value of ' x ' and ' y ' if:

$$
2\left[\begin{array}{rr}
x & 7 \\
9 & y-5
\end{array}\right]+\left[\begin{array}{rr}
6 & -7 \\
4 & 5
\end{array}\right]=\left[\begin{array}{rr}
10 & 7 \\
22 & 15
\end{array}\right]
$$

(b) Sonia had recurring deposit account in a bank and deposited $₹ 600$ per month for $2 \frac{1}{2}$ years. If the rate of interest was 10% p.a., find the maturity value of this account.
(c) Cards bearing numbers $2,4,6,8,10,12,14,16,18$ and 20 are kept in a bag. A card is drawn at random from the bag. Find the probability of getting a card which is:
(i) a prime number.
(ii) a number divisible by 4.
(iii) a number that is a multiple of 6 .
(iv) an odd number.

Question 2.

(a) The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm . Find the
[3]
(i) radius of the cylinder
(ii) volume of cylinder.

$$
\left(u s e \pi=\frac{22}{7}\right)
$$

(b) If $(k-3),(2 k+1)$ and $(4 k+3)$ are three consecutive terms of an A.P., find the value of k.
(c) $P Q R S$ is a cyclic quadrilateral. Given, $\angle Q P S=73^{\circ}$, $\angle P Q S=55^{\circ}$ and $\angle P S R=82^{\circ}$, calculate :

(i) $\angle Q R S$
(ii) $\angle R Q S$
(iii) $\angle P R Q$
[3] Question 3.
(a) If $(x+2)$ and $(x+3)$ are factors of $x^{3}+a x+b$, find the values of ' a ' and ' b '.
(b) Prove that $\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=\tan \theta+\cot \theta \quad$ [3]
(c) Using a graph paper draw a histogram for the given distribution showing the number of runs scored by 50 batsmen. Estimate the mode of the data :

Runs scored	$3000-$	4000	$4000-$	$5000-$	$6000-$	$7000-$	$8000-$
6000	6000	7000	8000	9000	10000		
No. of bats- men	4	18	9	6	7	2	4

Question 4.
(a) Solve the following inequation, write down the solution set and represent it on the real number line:

$$
-2+10 x \leq 13 x+10<24+10 x, x \in Z
$$

(b) If the straight lines $3 x-5 y=7$ and $4 x+a y+9=0$ are perpendicular to one another, find the value of a.
(c) Solve $x^{2}+7 x=7$ and give your answer correct to two decimal places.

SECTION—B (40 Marks)

(Attempt any four questions from this Section)

Question 5.

(a) The 4 th term of a G.P. is 16 and the 7 th term is 128. Find the first term and common ratio of the series. [3]
(b) A man invests ₹ 22,500 in ₹ 50 shares available at 10% discount. If the dividend paid by the company is 12%, calculate:
(i) The number of shares purchased
(ii) The annual dividend received
(iii) The rate of return he gets on his investment. Give your answer correct to the nearest whole number.
(c) Use graph paper for this question (Take $2 \mathrm{~cm}=1$ unit along both X and Y axis). $A B C D$ is a quadrilateral whose vertices are $A(2,2), B(2,-2), C(0,-1)$ and $D(0,1)$.
(i) Reflect quadrilateral $A B C D$ on the Y-axis and name it as $A^{\prime} B^{\prime} C D$.
(ii) Write down the coordinates of A^{\prime} and B^{\prime}.
(iii) Name two points which are invariant under the above reflection.
(iv) Name the polygon $A^{\prime} B^{\prime} C D$.

Question 6.
(a) Using properties of proportion, solve for x. Given that x is positive :
[3]

$$
\frac{2 x+\sqrt{4 x^{2}-1}}{2 x-\sqrt{4 x^{2}-1}}=4
$$

(b) If $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right], B=\left[\begin{array}{rr}0 & 4 \\ -1 & 7\end{array}\right]$ and $C=\left[\begin{array}{rr}1 & 0 \\ -1 & 4\end{array}\right]$, find $A C+B^{2}-10 C$.
(c) Prove that $(1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta)=2[4]$ Question 7.
(a) Find the value of k for which the following equation has equal roots :

$$
x^{2}+4 k x+\left(k^{2}-k+2\right)=0
$$

(b) On a map drawn to a scale of $1: 50,000$, a rectangular plot of land $A B C D$ has the following dimensions. $A B=$ $6 \mathrm{~cm} ; B C=8 \mathrm{~cm}$ and all angles are right angles. Find:
(i) the actual length of the diagonal distance AC of the plot in km.
(ii) the actual area of the plot in sq. km .
(c) $A(2,5), B(-1,2)$ and $C(5,8)$ are the vertices of a triangle $A B C$, ' M ' is a point on $A B$ such that $A M$: $M B=1: 2$. Find the coordinates of ' M '. Hence, find the equation of the line passing through the points C and M.

Question 8.
(a) ₹ 7500 were divided equally among a certain number of children. Had there been 20 less children, each would have received ₹ 100 more. Find the original number of children.
(b) If the mean of the following distribution is 24 , find the value of ' a '.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Number of stu- dents	7	a	8	10	5

(c) Using ruler and compass only, construct a $\triangle A B C$ such that $B C=5 \mathrm{~cm}$ and $A B=6.5 \mathrm{~cm}$ and $\angle A B C=$ 120°.
(i) Construct a circumcircle of $\triangle A B C$
(ii) Construct a cyclic quadrilateral $A B C D$, such that D is equidistant from $A B$ and $B C$.

Question 9.
(a) Priyanka has a recurring deposit account of ₹ 1000 per month at 10% per annum. If she gets ₹ 5550 as interest at the time of maturity, find the total time for which the account was held.
(b) In $\triangle P Q R, M N$ is parallel to $Q R$ and $\frac{P M}{M Q}=\frac{2}{3}$
(i) Find $\frac{M N}{Q R}$
(ii) Prove that $\triangle O M N$ and $\triangle O R Q$ are similar.
(iii) Find, Area of $\triangle O M N$: Area of $\triangle O R Q$.

(c) The following figure represents a solid consisting of right circular cylinder with a hemisphere at one end and a cone at the other. Their common radius is 7 cm . The height of the cylinder and cone are each of 4 cm . Find the volume of the solid.

Question 10.
(a) Use remainder theorem to factorize the following polynomial:

$$
2 x^{3}+3 x^{2}-9 x-10
$$

(b) In the figure given below ' O ' is the centre of the circle. If $Q R=O P$ and $\angle O R P=20^{\circ}$. Find the value of ' x ' giving reasons.

ICSE Mathematics-2018
(c) The angle of elevation from a point P of the top of a tower $Q R, 50 \mathrm{~m}$ high is 60° and that of the tower $P T$ from a point Q is 30°. Find the height of the tower $P T$, correct to the nearest metre.

Question 11.
(a) The 4 th term of an A.P. is 22 and 15th term is 66 . Find the first term and the common difference. Hence, find the sum of the series to 8 terms.
[4]
(b) Use Graph paper for this question.

A survey regarding height (in cm) of 60 boys belonging to Class 10 of a school was conducted. The following data was recorded:

Height in cm	$135-$ 140	$140-$	$145-$	$150-$	$155-$	$160-$	$165-$
150	155	160	165	170			
No. of boys	4	8	20	14	7	6	1

Taking $2 \mathrm{~cm}=$ height of 10 cm along one axis and $2 \mathrm{~cm}=10$ boys along the other axis draw an ogive of the above distribution. Use the graph to estimate the following :
(i) the median
(ii) lower quartile
(iii) if above 158 cm is considered as the tall boys of the class. Find the number of boys in the class who are tall.

ANSWERS

SECTION—A

Solution 1.
(a) We have,

$$
\begin{array}{rlr}
2\left[\begin{array}{rr}
x & 7 \\
9 & y-5
\end{array}\right]+\left[\begin{array}{rr}
6 & -7 \\
4 & 5
\end{array}\right] & =\left[\begin{array}{rr}
10 & 7 \\
22 & 15
\end{array}\right] \\
\Rightarrow \quad\left[\begin{array}{rr}
2 x & 14 \\
18 & 2 y-10
\end{array}\right]+\left[\begin{array}{rr}
6 & -7 \\
4 & 5
\end{array}\right] & =\left[\begin{array}{rr}
10 & 7 \\
22 & 15
\end{array}\right] \\
\Rightarrow \quad & {\left[\begin{array}{rr}
2 x+6 & 7 \\
22 & 2 y-5
\end{array}\right]} & =\left[\begin{array}{rr}
10 & 7 \\
22 & 15
\end{array}\right]
\end{array}
$$

On comparing both sides, we get

$$
\begin{aligned}
& \Rightarrow \quad 2 x+6=10 \text {, } \\
& 2 y-5=15 \\
& \Rightarrow \quad 2 x=10-6 \text {, } \\
& 2 y=15+5 \\
& \Rightarrow \quad 2 x=4 \text {, } \\
& 2 y=20 \\
& \Rightarrow \quad x=\frac{4}{2} \text {, } \\
& \therefore \quad x=2, y=10 \text {. } \\
& y=\frac{20}{2}
\end{aligned}
$$

Ans.
(b) Here, $\mathrm{P}=₹ 600, n=2 \frac{1}{2}$ years $=30$ months, $r=10 \%$
$\therefore \quad$ Interest, $\mathrm{I}=\mathrm{P} \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100}$

$$
\begin{aligned}
& =600 \times \frac{30 \times 31}{2 \times 12} \times \frac{10}{100} \\
& =₹ 2325
\end{aligned}
$$

\therefore Maturity value,

$$
\begin{aligned}
\text { M.V. } & =\mathrm{P} n+\mathrm{I} \\
& =600 \times 30+2325 \\
& =₹ 20325 .
\end{aligned}
$$

Ans.
(c) Here, Sample Space,

$$
S=\{2,4,6,8,10,12,14,16,18,20\}
$$

$$
\therefore \quad n(S)=10
$$

(i) Let A be the event of getting a prime number.

$$
\begin{array}{rlrl}
& & \mathrm{A} & =\{2\} \\
\therefore & n(\mathrm{~A}) & =1 \\
\therefore & \mathrm{P}(\mathrm{~A}) & =\frac{n(\mathrm{~A})}{n(\mathrm{~S})}=\frac{1}{10}
\end{array}
$$

Ans.
(ii) Let B be the event of getting a number divisible by 4 .

$$
\begin{array}{rlrl}
\therefore & B & =\{4,8,12,16,20\} \\
\therefore & n(B) & =5 \\
& \therefore & \mathrm{P}(\mathrm{~B}) & =\frac{n(\mathrm{~B})}{n(\mathrm{~S})}=\frac{5}{10}=\frac{1}{2}
\end{array}
$$

Ans.
(iii) Let C be the event of getting a number which is multiple of 6 .

$$
\begin{array}{lrl}
\therefore & C & =\{6,12,18\} \\
\therefore & n(C) & =3 \\
\therefore & P(C) & =\frac{n(C)}{n(S)}=\frac{3}{10}
\end{array}
$$

Ans.
(iv) Let D be the event of getting an odd number.

$$
\begin{aligned}
\therefore & \mathrm{D} & =\{ \} \\
\therefore & n(\mathrm{D}) & =0 \\
\therefore & \mathrm{P}(\mathrm{D}) & =\frac{n(\mathrm{D})}{n(\mathrm{~S})}=\frac{0}{10}=0
\end{aligned}
$$

Ans.
Solution 2.
(a) Given, circumference of base of cylinder $=132 \mathrm{~cm}$, height of cylinder, $h=25 \mathrm{~cm}$.
(i) Let r be the radius of cylinder

$$
\therefore \quad 2 \pi r=132
$$

$$
\Rightarrow \quad 2 \times \frac{22}{7} \times r=132
$$

$$
\Rightarrow \quad r=\frac{132 \times 7}{2 \times 22}=21 \mathrm{~cm}
$$

(ii) Volume of the cylinder

$$
\begin{aligned}
& =\pi r^{2} h \\
& =\frac{22}{7} \times(21)^{2} \times 25 \\
& =34650 \mathrm{~cm}^{3} .
\end{aligned}
$$

(b) Given, $(k-3),(2 k+1),(4 k+3)$ are 3 consecutive terms of an A.P.
As the difference between the consecutive terms in A.P. are same, i.e., $a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=d$.
$\therefore(2 k+1)-(k-3)=(4 k+3)-(2 k+1)$
$\Rightarrow \quad 2 k+1-k+3=4 k+3-2 k-1$
$\Rightarrow \quad k+4=2 k+2$
$\Rightarrow \quad k-2 k=2-4$
$\Rightarrow \quad-k=-2$
$\Rightarrow \quad k=2$
(c) Given, $\angle \mathrm{QPS}=73^{\circ}, \angle \mathrm{PQS}=55^{\circ}, \angle \mathrm{PSR}=82^{\circ}$
(i) $\angle \mathrm{QRS}+\angle \mathrm{QPS}=180^{\circ}$
(opposite angles of a cyclic quadrilateral are supplementary)
$\Rightarrow \quad \angle \mathrm{QRS}+73^{\circ}=180^{\circ}$
\Rightarrow

$$
\angle \mathrm{QRS}=180^{\circ}-73^{\circ}=107^{\circ}
$$

(ii) $\angle \mathrm{PQR}+\angle \mathrm{PSR}=180^{\circ}$
(opposite angles of a cyclic quadrilateral

$$
\begin{array}{lc}
\Rightarrow & \angle \mathrm{PQR}+82^{\circ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{PQR}=180^{\circ}-82^{\circ} \\
\Rightarrow & \angle \mathrm{PQR}=98^{\circ} \\
\Rightarrow & \angle \mathrm{RQS}+\angle \mathrm{PQS}=98^{\circ} \\
\Rightarrow & \angle \mathrm{RQS}+55^{\circ}=98^{\circ} \\
\Rightarrow & \angle \mathrm{RQS}=98^{\circ}-55^{\circ}=43^{\circ} . \quad \text { Ans. } \\
\text { (iii) } & \angle \mathrm{PSQ}+\angle \mathrm{QPS}+\angle \mathrm{PQS}=180^{\circ} \\
\Rightarrow & \angle \mathrm{PSQ}+73^{\circ}+55^{\circ}=180^{\circ}
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & \angle \mathrm{PSQ}=180^{\circ}-128^{\circ}=52^{\circ} \\
\therefore & \angle \mathrm{PRQ}=\angle \mathrm{PSQ} \\
\Rightarrow & \\
& \text { (angles on same segment are equal) } \\
& \angle \mathrm{PRQ}=52^{\circ} .
\end{array}
$$

Ans.

Ans.

Ans.

Ans. Solution 3.

(a) Let

$$
f(x)=x^{3}+a x+b
$$

$$
\begin{array}{lr}
\because(x+2) & \text { and }(x+3) \text { are factors of } f(x) \\
\therefore & f(-2)=0 \\
\Rightarrow & (-2)^{3}+a(-2)+b=0 \\
\Rightarrow & -8-2 a+b=0 \\
\Rightarrow & -2 a+b=8 \\
\text { Also, } & f(-3)=0 \\
\Rightarrow & (-3)^{3}+a(-3)+b=0 \\
\Rightarrow & -27-3 a+b=0 \\
\Rightarrow & -3 a+b=27 \tag{ii}
\end{array}
$$

Subtracting equation (ii) from equation (i), we have

$$
\begin{aligned}
&-2 a+b=8 \\
&-3 a+b=27 \\
&+\quad-\quad- \\
& \hline a=-19
\end{aligned}
$$

Putting the value of a in equation (i)

$$
-2 \times(-19)+b=8
$$

$$
\begin{array}{ll}
\Rightarrow & b=8-38=-30 \\
\therefore & a=-19, b=-30 .
\end{array}
$$

Ans.
(b) To prove,

$$
\begin{aligned}
& \sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta}=\tan \theta+\cot \theta \\
& \begin{aligned}
\therefore \quad \text { L.H.S. } & =\sqrt{\sec ^{2} \theta+\operatorname{cosec}^{2} \theta} \\
& =\sqrt{1+\tan ^{2} \theta+1+\cot ^{2} \theta}
\end{aligned}
\end{aligned}
$$

$$
\left[\because 1+\tan ^{2} \theta=\sec ^{2} \theta, 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta\right]
$$

$$
=\sqrt{\tan ^{2} \theta+\cot ^{2} \theta+2}
$$

$$
=\sqrt{\tan ^{2} \theta+\cot ^{2} \theta+2 \tan \theta \cdot \cot \theta}
$$

$$
[\because \tan \theta \cdot \cot \theta=1]
$$

$$
=\sqrt{(\tan \theta+\cot \theta)^{2}}
$$

$$
\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]
$$

$$
=\tan \theta+\cot \theta
$$

= R.H.S.

Hence Proved.
(c)

Runs Scored	No. of batsmen
$3000-4000$	4
$4000-5000$	18
$5000-6000$	9
$6000-7000$	6
$7000-8000$	7
$8000-9000$	2
$9000-10000$	4

ICSE Mathematics-2018

$$
\therefore \quad \text { Mode }=4600
$$

Solution 4.
(a) Given inequation is,

$$
\begin{aligned}
& -2+10 x \leq 13 x+10<24+10 x, x \in Z \\
& \Rightarrow \quad-2+10 x \leq 13 x+10 \text {; } \\
& \Rightarrow \quad 10 x-13 x \leq 10+2 \text {; } \\
& \Rightarrow \quad-3 x \leq 12 \text {; } \\
& \Rightarrow \quad-x \leq 4 \text {; } \\
& \Rightarrow \quad x \geq-4 \text {; } \\
& \text { and } \quad 13 x+10<24+10 x \\
& \Rightarrow \quad 13 x-10 x<24-10 \\
& \Rightarrow \quad 3 x<14 \\
& \Rightarrow \quad x<\frac{14}{3} \\
& \therefore \quad-4 \leq x<4 \frac{2}{3}
\end{aligned}
$$

\therefore Solution set $=\{-4,-3,-2,-1,0,1,2,3,4\}$

Ans.
(b) Given equation of lines are $3 x-5 y=7$ and $4 x+a y+9=0$
$\Rightarrow \quad-5 y=-3 x+7$ and $a y=-4 x-9$
$\Rightarrow \quad y=\frac{3}{5} x-\frac{7}{5} \quad$ and $\quad y=-\frac{4}{a} x-\frac{9}{a}$
Comparing both equations with $y=m x+c$, we get

$$
m_{1}=\frac{3}{5} \quad m_{2}=-\frac{4}{a}
$$

The lines are perpendicular to each other,

$$
\begin{array}{rr}
\therefore & m_{1} \times m_{2}=-1 \\
\Rightarrow & \frac{3}{5} \times\left(-\frac{4}{a}\right)=-1 \\
\Rightarrow & -\frac{12}{5}=-a \\
\Rightarrow & a=\frac{12}{5} \\
\Rightarrow & a=2 \frac{2}{5} .
\end{array}
$$

Ans.
(c) We have, $x^{2}+7 x=7$
$\Rightarrow \quad x^{2}+7 x-7=0$
Comparing it with $a x^{2}+b x+c=0$, we have

$$
a=1, b=7, c=-7
$$

$$
\therefore \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
=\frac{-7 \pm \sqrt{7^{2}-4 \times 1 \times(-7)}}{2 \times 1}
$$

$$
=\frac{-7 \pm \sqrt{49+28}}{2}
$$

$$
=\frac{-7 \pm \sqrt{77}}{2}
$$

$$
=\frac{-7 \pm 8.775}{2}
$$

$$
=\frac{-7+8.775}{2} \text { or } \frac{-7-8.775}{2}
$$

$$
=\frac{1.775}{2} \text { or } \frac{-15.775}{2}
$$

$$
=0.8875 \text { or }-7.8875
$$

$$
=0.89 \text { or }-7.89
$$

$$
\text { (correct to } 2 \text { decimal places) }
$$

Ans.

SECTION—B

Solution 5.
(a) Let a be the first term and r be the common ratio of the given G.P.
$\begin{array}{ll}\therefore & \mathrm{T}_{4}=16 \text { and } \mathrm{T}_{7}=128 \\ \Rightarrow & a r^{3}=16 \\ \text { and } & a r^{6}=128\end{array}$

$$
\begin{equation*}
a r^{6}=128 \tag{i}
\end{equation*}
$$

Dividing equation (ii) by equation (i), we get

$$
\begin{aligned}
& & \frac{a r^{6}}{a r^{3}} & =\frac{128}{16} \\
\Rightarrow & & r^{3} & =8 \\
\Rightarrow & & r & =2
\end{aligned}
$$

\therefore From equation (i), $a \times 2^{3}=16$

$$
\begin{array}{ll}
\Rightarrow & a=\frac{16}{8}=2 \\
\therefore & a=2, r=2 .
\end{array}
$$

Ans.
(b) Given, investment $=₹ 22,500$, N.V. $=₹ 50$, discount $=10 \%$

$$
\therefore \quad \text { M.V. }=₹\left(50-\frac{10}{100} \times 50\right)=₹ 45
$$

Rate of dividend $=12 \%$
(i) Number of shares $=\frac{\text { Investment }}{\text { M.V. }}$

$$
=\frac{22500}{45}=500
$$

Ans.
(ii) Annual dividend $=$ Dividend per share \times No. of shares

$$
\begin{aligned}
& =\frac{12}{100} \times 50 \times 500 \\
& =₹ 3000
\end{aligned}
$$

Ans.
(iii) Rate of return $=\frac{\text { Dividend }}{\text { Investment }} \times 100 \%$

$$
\begin{aligned}
& =\frac{3000}{22500} \times 100 \% \\
& =13.3 \%=13 \%
\end{aligned}
$$

(correct to the nearest whole number)
Ans.
(c) (i) Reflected quadrilateral $A^{\prime} B^{\prime} C D$ is shown in graph.
(ii) Coordinates of $\mathrm{A}^{\prime}=(-2,2)$

Coordinates of $\mathrm{B}^{\prime}=(-2,-2)$
(iii) Two invariant points are $\mathrm{C}(0,-1)$ and $\mathrm{D}(0,1)$
(iv) $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{CD}$ is an isosceles trapezium.

Solution 6.
(a) Given, $\frac{2 x+\sqrt{4 x^{2}-1}}{2 x-\sqrt{4 x^{2}-1}}=\frac{4}{1}$
$\Rightarrow \frac{2 x+\sqrt{4 x^{2}-1}+2 x-\sqrt{4 x^{2}-1}}{2 x+\sqrt{4 x^{2}-1}-2 x+\sqrt{4 x^{2}-1}}=\frac{4+1}{4-1}$
(using componendo and dividendo)
$\Rightarrow \quad \frac{4 x}{2 \sqrt{4 x^{2}-1}}=\frac{5}{3}$
(b) Given, $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right], \mathrm{B}=\left[\begin{array}{rr}0 & 4 \\ -1 & 7\end{array}\right], \mathrm{C}=\left[\begin{array}{rr}1 & 0 \\ -1 & 4\end{array}\right]$

$$
\therefore \quad A C+B^{2}-10 C=\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-1 & 4
\end{array}\right]
$$

$$
\begin{aligned}
& \quad+\left[\begin{array}{rr}
0 & 4 \\
-1 & 7
\end{array}\right]\left[\begin{array}{rr}
0 & 4 \\
-1 & 7
\end{array}\right]-10\left[\begin{array}{rr}
1 & 0 \\
-1 & 4
\end{array}\right] \\
& = \\
& =\left[\begin{array}{ll}
2-3 & 0+12 \\
5-7 & 0+28
\end{array}\right]+\left[\begin{array}{rr}
0-4 & 0+28 \\
0-7 & -4+49
\end{array}\right] \\
& -\quad-\left[\begin{array}{rr}
10 & 0 \\
-10 & 40
\end{array}\right] \\
& =\left[\begin{array}{ll}
-1 & 12 \\
-2 & 28
\end{array}\right]+\left[\begin{array}{ll}
-4 & 28 \\
-7 & 45
\end{array}\right]-\left[\begin{array}{rr}
10 & 0 \\
-10 & 40
\end{array}\right] \\
& = \\
& =\left[\begin{array}{rr}
-5 & 40 \\
-9 & 73
\end{array}\right]-\left[\begin{array}{rr}
10 & 0 \\
-10 & 40
\end{array}\right] \\
& =\left[\begin{array}{rr}
-15 & 40 \\
1 & 33
\end{array}\right]
\end{aligned}
$$

(c) To prove, $(1+\cot \theta-\operatorname{cosec} \theta)(1+\tan \theta+\sec \theta)=2$
$\therefore \quad$ L.H.S. $=(1+\cot \theta-\operatorname{cosec} \theta)$

$$
\begin{aligned}
& (1+\tan \theta+\sec \theta) \\
& =\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right) \\
& \left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right) \\
& =\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right) \\
& \left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right) \\
& =\frac{(\sin \theta+\cos \theta)^{2}-(1)^{2}}{\sin \theta \cos \theta} \\
& {\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\
& =\frac{1+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\
& {\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]} \\
& =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta} \\
& =2=\text { R.H.S. } \\
& \text { Hence Proved. }
\end{aligned}
$$

Solution 7.
(a) Given equation is, $x^{2}+4 k x+\left(k^{2}-k+2\right)=0$

Comparing it with $a x^{2}+b x+c=0$, we have,

$$
\begin{aligned}
a=1, b & =4 k, c=k^{2}-k+2 \\
\therefore \quad & \\
& =b^{2}-4 a c=(4 k)^{2}-4 \times 1 \\
& =16\left(k^{2}-k+2\right) \\
& =12 k^{2}+4 k^{2}+4 k-8
\end{aligned}
$$

\because The roots of given equation are equal, so

$$
\left.\begin{array}{rlrl}
& & \mathrm{D} & =0 \\
\Rightarrow & & 12 k^{2}+4 k-8 & =0 \\
\Rightarrow & & 3 k^{2}+k-2 & =0 \\
\Rightarrow & 3 k^{2}+3 k-2 k-2 & =0 \\
\Rightarrow & 3 k(k+1)-2(k+1) & =0 \\
\Rightarrow & & (k+1)(3 k-2) & =0 \\
\Rightarrow & k+1 & =0 \quad \text { or } 3 k-2=0 \\
& \Rightarrow & & k
\end{array}\right)=-1 \text { or } \quad k=\frac{2}{3}
$$

\therefore The value of k is -1 or $\frac{2}{3}$.
(b) Here,

$$
1: k=1: 50,000
$$

and

$$
\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}
$$

\therefore

$$
\begin{aligned}
A C & =\sqrt{A B^{2}+B C^{2}} \\
& =\sqrt{6^{2}+8^{2}} \\
& =\sqrt{36+64} \\
& =\sqrt{100}=10 \mathrm{~cm}
\end{aligned}
$$

(i) Actual length of $\mathrm{AC}=k \times \mathrm{AC}$

$$
\begin{aligned}
& =50,000 \times 10 \mathrm{~cm} \\
& =5,00,000 \mathrm{~cm} \\
& =\frac{500000}{100000} \mathrm{~km}=5 \mathrm{~km} .
\end{aligned}
$$

Ans.
(ii) Area of rectangle ABCD

$$
\begin{aligned}
& =6 \times 8=48 \mathrm{~cm}^{2} \\
\therefore \quad \text { Actual area } & =k^{2} \times \text { Area of ABCD } \\
& =(50,000)^{2} \times 48 \mathrm{~cm}^{2} \\
& =\frac{50,000 \times 50,000 \times 48}{1,00,000 \times 1,00,000} \mathrm{~km}^{2} \\
& =12 \mathrm{~km}^{2} .
\end{aligned}
$$

(c) Given, vertices of triangle are, $\mathrm{A}(2,5), \mathrm{B}(-1,2), \mathrm{C}$ $(5,8), \mathrm{AM}: \mathrm{MB}=1: 2$.
$\because M$ is a point on $A B$.
$A \longmapsto \quad 1: 2 \quad B$

$$
(2,5) \quad \mathrm{M}(a, b) \quad(-1,2)
$$

\therefore Coordinates of $\mathrm{M}=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
Here, $m_{1}: m_{2}=1: 2, x_{1}=2, y_{1}=5, x_{2}=-1, y_{2}=2$
\therefore Coordinates of M

$$
\begin{aligned}
& =\left(\frac{1 \times(-1)+2 \times 2}{1+2}, \frac{1 \times 2+2 \times 5}{1+2}\right) \\
& =\left(\frac{-1+4}{3}, \frac{12}{3}\right)=(1,4)
\end{aligned}
$$

Ans.
The equation of line passing through $C(5,8)$ and $\mathrm{M}(1,4)$ is

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

Here, $x_{1}=5, y_{1}=8, x_{2}=1, y_{2}=4$

$$
\begin{aligned}
\therefore & y-8 & =\frac{4-8}{1-5}(x-5) \\
\Rightarrow & y-8 & =\frac{-4}{-4}(x-5) \\
\Rightarrow & y-8 & =x-5 \\
\Rightarrow & x-y+3 & =0 .
\end{aligned}
$$

Ans.
Solution 8.
(a) Let the original number of children be x.

Total amount to be distributed $=₹ 7,500$

$$
\therefore \quad \text { Each will receive }=\frac{7,500}{x}
$$

If the number of children are $(x-20)$
Then, each will receive $=\frac{7,500}{x-20}$
According to question,

$$
\begin{aligned}
& & \begin{aligned}
x-500 \\
x-20
\end{aligned} \frac{7,500}{x} & =100 \\
& & & 7,500\left(\frac{1}{x-20}-\frac{1}{x}\right)
\end{aligned}=100 .
$$

($\because x$ cannot be negative)
\therefore The original number of children $=50$. Ans.
(b)

Marks	Mid values (x)	No. of students (f)	$f x$
$0-10$	5	7	35
$10-20$	15	a	$15 a$
$20-30$	25	8	200
$30-40$	35	10	350
$40-50$	45	5	225
		$\sum f=30+a$	$\sum f x=15 a+810$

$$
\begin{array}{rlrl}
\Rightarrow & & 5 n^{2}+5 n & =6660 \\
\Rightarrow & & 5\left(n^{2}+n\right) & =6660 \\
\Rightarrow & n n & =1332 \\
\Rightarrow & & n^{2}+n+n-1332 & =0 \\
\Rightarrow & n^{2}+37 n-36 n-1332 & =0 \\
\Rightarrow & n(n+37)-36(n+37) & =0 \\
\Rightarrow & & (n+37)(n-36) & =0 \\
\Rightarrow & n+37 & =0 \text { or } n-36=0 \\
\Rightarrow & n & n & =-37 \text { or } n=36 \\
& & n & =36
\end{array}
$$

$$
\begin{array}{lrl}
\therefore & \text { Mean }=\frac{\Sigma f x}{\Sigma f} \\
\Rightarrow & 24 & =\frac{15 a+810}{a+30} \\
\Rightarrow & 24 a+720 & =15 a+810 \\
\Rightarrow & 24 a-15 a & =810-720 \\
\Rightarrow & 9 a & =90 \\
\Rightarrow & a & =10 .
\end{array}
$$

(c) Given, $\mathrm{BC}=5 \mathrm{~cm}, \mathrm{AB}=6.5 \mathrm{~cm}, \angle \mathrm{ABC}=120^{\circ}$ Steps of construction :
(i) Construct $\triangle \mathrm{ABC}$ with given data.
(ii) Draw perpendicular bisectors of $B C$ and $A B$ which meet at O.
(iii) Taking O as centre and OB as radius, draw circumcircle of $\triangle \mathrm{ABC}$ passing through A, B and C.
(iv) Draw angle bisector of ABC as BD which meets circle at D.
(v) Join AD and $\mathrm{CD} . \mathrm{ABCD}$ is the required cyclic quadrilateral.

Solution 9.
(a) Given, $\mathrm{P}=₹ 1,000, r=10 \%, \mathrm{I}=₹ 5,550, n=$?

$$
\begin{array}{ll}
\therefore & \mathrm{I}=\mathrm{P} \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100} \\
\Rightarrow & 5550=1000 \times \frac{n^{2}+n}{24} \times \frac{10}{100} \\
\Rightarrow & 555=\frac{5}{12}\left(n^{2}+n\right)
\end{array}
$$

$\therefore \quad \triangle \mathrm{OMN} \sim \Delta \mathrm{ORQ}$ (By AA axiom)
Ans.
(iii) $\frac{\text { Area of }(\triangle \mathrm{OMN})}{\text { Area of }(\triangle \mathrm{ORQ})}=\frac{\mathrm{MN}^{2}}{\mathrm{QR}^{2}}$
(Area of similar triangles are proportional to the square of their corresponding sides)

ICSE Mathematics-2018

$$
=\frac{2^{2}}{5^{2}}=\frac{4}{25}
$$

$\therefore \quad \angle \mathrm{OQP}=\angle \mathrm{QOR}+\angle \mathrm{ORQ}$
(Exterior angle is equal to
\Rightarrow Area of $\triangle \mathrm{OMN}$: Area of $\triangle \mathrm{ORQ}=4: 25$.
Ans.

$$
\therefore \quad \angle \mathrm{OPQ}=\angle \mathrm{OQP} \quad(\because \mathrm{OP}=\mathrm{OQ})
$$

$$
=40^{\circ}
$$

$$
=h=4 \mathrm{~cm} .
$$

\therefore Volume of solid $=$ Volume of cone + Volume of cylinder + Volume of hemisphere

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} h+\pi r^{2} h+\frac{2}{3} \pi r^{3} \\
& =\pi r^{2}\left(\frac{1}{3} h+h+\frac{2}{3} r\right) \\
& =\frac{22}{7} \times 7^{2}\left(\frac{1}{3} \times 4+4+\frac{2}{3} \times 7\right) \\
& =22 \times 7\left(\frac{4}{3}+4+\frac{14}{3}\right) \\
& =154\left(\frac{4+12+14}{3}\right) \\
& =154\left(\frac{30}{3}\right) \\
& =154 \times 10=1540 \mathrm{~cm}^{3} . \quad \text { Ans. }
\end{aligned}
$$

$\Rightarrow \quad \angle \mathrm{POQ}+40^{\circ}+40^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{POQ}=180^{\circ}-80^{\circ}=100^{\circ}$
$\therefore \angle \mathrm{POT}+\angle \mathrm{POQ}+\angle \mathrm{QOR}=180^{\circ}$
(sum of angles on a straight line is 180°)

Solution 10.
(a) Let

$$
f(x)=2 x^{3}+3 x^{2}-9 x-10
$$

For $x=2$,

$$
\begin{aligned}
f(2) & =2 \times 2^{3}+3 \times 2^{2}-9 \times 2-10 \\
& =16+12-18-10 \\
& =28-28=0 .
\end{aligned}
$$

$\therefore(x-2)$ is a factor of $f(x)$

$$
\begin{gathered}
x-2) \begin{array}{c}
2 x^{3}+3 x^{2}-9 x-10\left(2 x^{2}+7 x+5\right. \\
2 x^{3}-4 x^{2} \\
-\quad+ \\
7 x^{2}-9 x \\
7 x^{2}-14 x \\
-\quad+ \\
5 x-10 \\
5 x-10
\end{array}
\end{gathered}
$$

$$
\frac{-\quad+}{\times}
$$

Now, $2 x^{2}+7 x+5=2 x^{2}+5 x+2 x+5$

$$
\begin{aligned}
& =x(2 x+5)+1(2 x+5) \\
& =(2 x+5)(x+1) \\
\therefore \quad f(x) & =(x+1)(x-2)(2 x+5) \quad \text { Ans. }
\end{aligned}
$$

(b) Given, $\mathrm{QR}=\mathrm{OP}, \angle \mathrm{ORP}=20^{\circ}$

$$
\begin{array}{llrl}
\text { But, } & & \mathrm{OP} & =\mathrm{OQ} \\
\Rightarrow & \mathrm{OP} & =\mathrm{OQ}=\mathrm{QR} & (\text { radius of circle }) \\
\therefore & \angle \mathrm{QOS} & =\angle \mathrm{ORQ} & (\because \mathrm{QR}=\mathrm{OQ}) \\
& & & 20^{\circ} .
\end{array}
$$

$$
\begin{align*}
\Rightarrow \quad x & =\frac{y}{\sqrt{3}} \tag{ii}\\
& =\frac{\frac{50}{\sqrt{3}}}{\sqrt{3}} \quad \text { [using eqn. (i)] } \\
& =\frac{50}{\sqrt{3} \times \sqrt{3}}=\frac{50}{3} \\
& =16.667 \\
& =17 \mathrm{~m} \quad \text { Ans. }
\end{align*}
$$

(i) Median $=\frac{n}{2}$ th observation
(i) Median $=\frac{n}{2}$ th observation

$$
\begin{aligned}
& =\frac{60}{2} \text { th observation } \\
& =30 \text { th observation } \\
& =150 \mathrm{~cm} \text { (from ogive) Ans. }
\end{aligned}
$$

(ii) Lower quartile $=\frac{n}{4}$ th observation

$$
\begin{aligned}
& =\frac{60}{4} \text { th observation } \\
& =15 \text { th observation } \\
& =146 \mathrm{~cm} \text { (from ogive) Ans. }
\end{aligned}
$$

(a) Let a be the first term and d be the common difference of given A.P.

$$
\begin{array}{lrr}
\therefore & a_{4}=22 \text { and } a_{15}=66 & \text { (Given) } \\
\Rightarrow & a+3 d & =22 \\
\text { and } & a+14 d & =66
\end{array}
$$

Subtracting equation (i) from equation (ii), we get

$$
\begin{aligned}
& a+14 d=66 \\
& a+3 d=22 \\
&-\quad-\quad- \\
& \hline 11 d=44 \\
& \Rightarrow \quad d=4
\end{aligned}
$$

From equation (i),

$$
\begin{aligned}
& & a+3 \times 4 & =22 \\
\Rightarrow & & a & =22-12=10 \\
\therefore & & a & =10, d=4 .
\end{aligned}
$$

Sum of series to 8 terms,

$$
\begin{aligned}
\mathrm{S}_{8} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{8}{2}[2 \times 10+(8-1) 4] \\
& =4(20+28) \\
& =4 \times 48=192
\end{aligned}
$$

Height in cm	No. of Boys	c.f.
$135-140$	4	4
$140-145$	8	12
$145-150$	20	32
$150-155$	14	46
$155-160$	7	53
$160-165$	6	59
$165-170$	1	60
	$n=60$	

Solution 11.

$$
8 \text { terms, }
$$

Ans.
(b)
(correct to the nearest metre)

Mathematics

Questions

SECTION—A (40 Marks)

(Attempt all questions from this Section)

Question 1.

(a) If b is the mean proportion between a and c, show that:

$$
\frac{a^{4}+a^{2} b^{2}+b^{4}}{b^{4}+b^{2} c^{2}+c^{4}}=\frac{a^{2}}{c^{2}}
$$

(b) Solve the equation $4 x^{2}-5 x-3=0$ and give your answer correct to two decimal places.
(c) $A B$ and $C D$ are two parallel chords of a circle such that $A B=24 \mathrm{~cm}$ and $C D=10 \mathrm{~cm}$. If the radius of the circle is 13 cm , find the distance between the two chords.**

Question 2.
(a) Evaluate without using trigonometric tables,**
$\sin ^{2} 28^{\circ}+\sin ^{2} 62^{\circ}+\tan ^{2} 38^{\circ}-\cot ^{2} 52^{\circ}+\frac{1}{4} \sec ^{2} 30^{\circ}$
(b) If $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}-2 & 1 \\ -3 & 2\end{array}\right]$ and $A^{2}-5 B^{2}=5 C$. Find matrix C where C is a 2 by 2 matrix.
(c) Jaya borrowed ₹ 50,000 for 2 years. The rates of interest for two successive years are 12% and 15% respectively. She repays ₹ 33,000 at the end of the first year. Find the amount she must pay at the end of the second year to clear her debt.**
[3]
Question 3.
(a) The catalogue price of a computer set is ₹ 42000 . The shopkeeper gives a discount of 10% on the listed price. He further gives an off-season discount of 5% on the discounted price. However, sales tax at 8% is charged on the remaining price after the two successive discounts. Find :**
(i) the amount of sales tax a customer has to pay
(ii) the total price to be paid by the customer for the computer set.
** Answer is not given due to change in the present syllabus.
(b) $P(1,-2)$ is a point on the line segment $A B$ with $A(3,-6)$ and $B(x, y)$ such that $A P: P B$ is equal to $2: 3$. Find the coordinates of B.
(c) The marks of 10 students of a class in an examination arranged in ascending order are as follows:

$$
\begin{equation*}
13,35,43,46, x, x+4,55,61,71,80 \tag{3}
\end{equation*}
$$

If the median marks is 48 , find the value of x. Hence find the mode of the given data.

Question 4.

(a) What must be subtracted from $16 x^{3}-8 x^{2}+4 x+7$ so that the resulting expression has $2 x+1$ as a factor? [3]
(b) In the given figure $A B C D$ is a rectangle. It consists of a circle and two semi-circles each of which are of radius 5 cm . Find the area of the shaded region. Give your answer correct to three significant figures.**

(c) Solve the following inequation and represent the solution set on a number line.

$$
-8 \frac{1}{2}<-\frac{1}{2}-4 x \leq 7 \frac{1}{2}, x \in \mathrm{I}
$$

SECTION-B (40 Marks)

(Attempt any four questions from this Section)
Question 5.
(a) Given matrix $B=\left[\begin{array}{ll}1 & 1 \\ 8 & 3\end{array}\right]$. Find the matrix X if,
$X=B^{2}-4 B$.
[4]
Hence, solve for a and b, given $X\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}5 \\ 50\end{array}\right]$
(b) How much should a man invest in ₹ 50 shares selling at ₹ 60 to obtain an income of ₹ 450, if the rate of dividend declared is 10%. Also find his yield percent, to the nearest whole number.
(c) Sixteen cards are labelled as $a, b, c, \ldots \ldots . . m, n, o, p$. They are put in a box and shuffled. A boy is asked to draw a card from the box. What is the probability that the card drawn is :
(i) a vowel.
(ii) a consonant.
(iii) none of the letters of the word 'median'.

Question 6.
(a) Using a ruler and a compass, construct a triangle $A B C$ in which $A B=7 \mathrm{~cm}, \angle C A B=60^{\circ}$ and $A C=5 \mathrm{~cm}$. Construct the locus of:
(i) points equidistant from $A B$ and $A C$.
(ii) points equidistant from $B A$ and $B C$.

Hence, construct a circle touching the three sides of the triangle internally.
(b) A conical tent has to accommodate 77 persons. Each person must have $16 \mathrm{~m}^{3}$ of air to breathe. Given the radius of the tent as 7 m , find the height of the tent and also its curved surface area.
(c) If $\frac{7 m+2 n}{7 m-2 n}=\frac{5}{3}$ use properties of proportion to find [3]
(i) $m: n$
(ii) $\frac{m^{2}+n^{2}}{m^{2}-n^{2}}$

Question 7.

(a) A page from a savings bank account passbook is given below :**

Data	Parti- culars	Amount With- drawn (₹)	Amount Deposited (₹)	Balance (₹)
Jan. 7, 2016	B/F			3000.00
Jan. 10, 2016	By Cheque		2600.00	5600.00
Feb. 8, 2016	To Self	1500.00		4100.00
Apr. 6, 2016	By Cheque	2100.00		2000.00
May 4, 2016	By Cash		6500.00	8500.00
May 27, 2016 By Cheque		1500.00	10000.00	

(i) Calculate the interest for the 6 months from January to June 2016, at 6\% per annum.
(ii) If the account is closed on 1st July 2016, find the amount received by the account holder.
(b) Use a graph paper for this question (Take $2 \mathrm{~cm}=1$ unit on both X and Y axis)
(i) Plot the following points:
$A(0,4), B(2,3), C(1,1)$ and $D(2,0)$
(ii) Reflect points B, C, D on the Y-axis and write down their coordinates. Name the images as B^{\prime}, C^{\prime}, D^{\prime} respectively.

[^0](iii) Join the points $A, B, C, D, D^{\prime}, C^{\prime}, B^{\prime}$ and A in order, so as form a closed figure.
Write down equation of the line of symmetry of the figure formed.**
Question 8.
(a) Calculate the mean of the following distribution using step deviation method.
[4]

Marks	$0-$ 10	$10-$ 20	$20-$ 30	$30-$ 40	$40-$ 50	$50-$ 60
Number of Stu- dents	10	9	25	30	16	10

(b) In the given figure $P Q$ is a tangent to the circle at A. $A B$ and $A D$ are bisectors of $\angle C A Q$ and $\angle P A C$. If $\angle B A Q=30^{\circ}$, prove that:
(i) $B D$ is a diameter of the circle.
(ii) $\triangle A B C$ is an isosceles triangle.

(c) The printed price of an air conditioner is ₹ 45,000.The wholesaler allows a discount of 10% to the shopkeeper. The shopkeeper sells the article to the customer at a discount of 5\% of the marked price. Sales tax (under $V A T)$ is charged at the rate of 12% at every stage.
Find :**
(i) VAT paid by the shopkeeper to the government.
(ii) The total amount paid by the customer inclusive of tax.
Question 9.
(a) In the figure given, O is the centre of the circle. $\angle D A E=70^{\circ}$. Find, giving suitable reasons, the measure of:
[4]
(i) $\angle B C D$
(ii) $\angle B O D$
(iii) $\angle O B D$

(b) $A(-1,3), B(4,2)$ and $C(3,-2)$ are the vertices of a triangle.
(i) Find the coordinates of the centroid G of the triangle.
(ii) Find the equation of the line through G and parallel to $A C$.
(c) Prove that

$$
\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta
$$

Question 10.
(a) The sum of the ages of Vivek and his younger brother Amit is 47 years. The product of their ages in years is 550. Find their ages.
(b) The daily wages of 80 workers in a project are given below.

Wages (in ₹)	$400-$	450	$450-$	$500-$	$550-$	$600-$	$650-$
550	600	$700-$ 650	700	750			
No. of workers	2	6	12	18	24	13	5

Use a graph paper to draw an ogive for the above distribution. (Use a scale of $2 \mathrm{~cm}=₹ 50$ on X -axis and $2 \mathrm{~cm}=10$ workers on Y-axis). Use your ogive to estimate :
(i) the median wage of the workers.
(ii) the lower quartile wage of workers.
(iii) the number of workers who earn more than ₹ 625 daily.
[6]

Question 11.
(a) The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
(b) $P Q R$ is a triangle. S is a point on the side $Q R$ of $\triangle P Q R$ such that $\angle P S R=\angle Q P R$. Given $Q P=8 \mathrm{~cm}$, $P R=6 \mathrm{~cm}$ and $S R=3 \mathrm{~cm}$
(i) Prove $\triangle P Q R \sim \triangle S P R$
(ii) Find the length of $Q R$ and $P S$
(iii) $\frac{\text { Area of } \triangle P Q R}{\text { Area of } \triangle S P R}$

(c) Mr. Richard has a recurring deposit account in a bank for 3 years at 7.5% p.a. simple interest. If he gets ₹ 8325 as interest at the time of maturity, find:
(i) The monthly deposit
(ii) The maturity value.

ANSWERS

SECTION—A

Solution 1.
(a) Given, b is mean proportion between a and c.

$$
\begin{array}{rlrl}
\therefore & & \frac{a}{b} & =\frac{b}{c}=k \text { (say) } \\
& \Rightarrow & b & =k c ; a=k b=k(k c)=k^{2} c \\
& \therefore & \text { L.H.S. } & =\frac{a^{4}+a^{2} b^{2}+b^{4}}{b^{4}+b^{2} c^{2}+c^{4}} \\
& =\frac{\left(k^{2} c\right)^{4}+\left(k^{2} c\right)^{2} \cdot(k c)^{2}+(k c)^{4}}{(k c)^{4}+(k c)^{2} c^{2}+c^{4}} \\
& & =\frac{k^{8} c^{4}+k^{6} c^{4}+k^{4} c^{4}}{k^{4} c^{4}+k^{2} c^{4}+c^{4}} \\
& =\frac{k^{4} c^{4}\left(k^{4}+k^{2}+1\right)}{c^{4}\left(k^{4}+k^{2}+1\right)}=k^{4}
\end{array}
$$

and R.H.S. $=\frac{a^{2}}{c^{2}}=\frac{\left(k^{2} c\right)^{2}}{c^{2}}=\frac{k^{4} c^{2}}{c^{2}}=k^{4}$
$\therefore \quad$ L.H.S. $=$ R.H.S.
Hence Proved.
(b) Given equation is, $4 x^{2}-5 x-3=0$.

Comparing it with $a x^{2}+b x+c=0$, we have

$$
\begin{aligned}
a=4, b & =-5, c=-3 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 4 \times(-3)}}{2 \times 4} \\
& =\frac{5 \pm \sqrt{25+48}}{8}=\frac{5 \pm \sqrt{73}}{8} \\
& =\frac{5 \pm 8.544}{8} \\
& =\frac{5+8.544}{8} \text { or } \frac{5-8.544}{8} \\
& =\frac{13.544}{8} \text { or } \frac{-3.544}{8} \\
& =1.693 \text { or }-0.443 \\
& =1.69 \text { or }-0.44
\end{aligned}
$$

(correct to 2 decimal places) Ans. Solution 2.
(b) Given, $\mathrm{A}=\left[\begin{array}{ll}1 & 3 \\ 3 & 4\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}-2 & 1 \\ -3 & 2\end{array}\right]$

We have, $A^{2}-5 B^{2}=5 C$

$$
\left.\begin{array}{ll}
\Rightarrow & {\left[\begin{array}{ll}
1 & 3 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right.} \\
3
\end{array}\right]-5\left[\begin{array}{ll}
-2 & 1 \\
-3 & 2
\end{array}\right]\left[\begin{array}{ll}
-2 & 1 \\
-3 & 2
\end{array}\right]=5 C ~\left(\begin{array}{ll}
1+9 & 3+12 \\
3+12 & 9+16
\end{array}\right] .
$$

$$
\therefore \quad 48=\frac{2 x+4}{2}
$$

$$
\Rightarrow \quad 48=\frac{2(x+2)}{2}
$$

$$
\Rightarrow \quad x+2=48
$$

Solution 3.

(b) Given Co-ordinates are $\mathrm{P}(1,-2), \mathrm{A}(3,-6)$, $\mathrm{B}(x, y)$, and $\mathrm{AP}: \mathrm{PB}=2: 3$
By section formula,

Ans.
(c) Given marks are $13,35,43,46, x, x+4,55,61,71$, 80.

Median $=48$
$\because n=10$ (even)
$\therefore \quad$ Median $=\frac{1}{2}\left[\left(\frac{n}{2}\right)^{\text {th }}\right.$ observation

$$
\begin{aligned}
& \left.+\left(\frac{n}{2}+1\right)^{\text {th }} \text { observation }\right] \\
= & \frac{5^{\text {th }} \text { observation }+6^{\text {th }} \text { observation }}{2} \\
= & \frac{x+x+4}{2}
\end{aligned}
$$

$\Rightarrow \quad x=48-2=46$
$\therefore \quad x+4=46+4=50$
\therefore The marks are : $13,35,43,46,46,50,55,61,71,80$.
Since 46 has highest frequency
$\therefore \quad$ Mode $=46$
Ans.
Solution 4.
(a) Let the required number be K.

Let $f(x)=16 x^{3}-8 x^{2}+4 x+7-K$
$\because \quad(2 x+1)$ is a factor of $f(x)$
$\therefore \quad f\left(-\frac{1}{2}\right)=0$
$\Rightarrow 16 \times\left(-\frac{1}{2}\right)^{3}-8 \times\left(-\frac{1}{2}\right)^{2}+4 \times\left(-\frac{1}{2}\right)+7-\mathrm{K}=0$
$\Rightarrow-16 \times \frac{1}{8}-8 \times \frac{1}{4}-4 \times \frac{1}{2}+7-\mathrm{K}=0$
$\Rightarrow \quad-2-2-2+7-K=0$
$\Rightarrow \quad-6+7-K=0$
$\Rightarrow \quad 1-\mathrm{K}=0$
$\Rightarrow \quad \mathrm{K}=1$
\therefore The required number to be subtracted is 1 .
Ans.
(c) Given inequation is,

$$
\begin{aligned}
&-8 \frac{1}{2}<-\frac{1}{2}-4 x \leq 7 \frac{1}{2}, x \in \mathrm{I} \\
& \Rightarrow-\frac{17}{2}<\frac{-1-8 x}{2} \leq \frac{15}{2} \\
& \Rightarrow \quad-\frac{17}{2} \times 2<\frac{-1-8 x}{2} \times 2 \leq \frac{15}{2} \times 2
\end{aligned}
$$

[Multiplying with 2 in complete inequation]
$\Rightarrow-17<-1-8 x \leq 15$
$\Rightarrow-17+1<-1+1-8 x \leq 15+1$
[Adding 1 in complete inequation]
$\Rightarrow-16<-8 x \leq 16$
$\Rightarrow \frac{-16}{-8}>\frac{-8 x}{-8} \geq \frac{16}{-8}$
[Dividing by -8 in the inequation]
$\Rightarrow 2>x \geq-2$
$\Rightarrow-2 \leq x<2$
\therefore Solution set $=\{-2,-1,0,1\}$

Ans.

$$
\begin{aligned}
& x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \\
& y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \text {, } \\
& \underset{(3,-6)}{ } \begin{array}{cc}
2 & \mathrm{P}, ~ \\
\mathrm{~A},-2) & (x, y)
\end{array} \mathrm{B} \\
& \Rightarrow \quad 1=\frac{2 \times x+3 \times 3}{2+3},-2=\frac{2 \times y+3 \times(-6)}{2+3} \\
& \Rightarrow \quad 5=2 x+9, \quad-10=2 y-18 \\
& \Rightarrow \quad 2 x=5-9, \quad 2 y=-10+18 \\
& \Rightarrow \quad x=\frac{-4}{2}, \quad y=\frac{8}{2} \\
& \Rightarrow \quad x=-2, y=4
\end{aligned}
$$

SECTION-B

Solution 5.
(a) Given, $B=\left[\begin{array}{ll}1 & 1 \\ 8 & 3\end{array}\right]$

$$
\begin{aligned}
\therefore \quad X & =B^{2}-4 B=\left[\begin{array}{ll}
1 & 1 \\
8 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
8 & 3
\end{array}\right]-4\left[\begin{array}{ll}
1 & 1 \\
8 & 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
1+8 & 1+3 \\
8+24 & 8+9
\end{array}\right]-\left[\begin{array}{cc}
4 & 4 \\
32 & 12
\end{array}\right] \\
& =\left[\begin{array}{cc}
9 & 4 \\
32 & 17
\end{array}\right]-\left[\begin{array}{cc}
4 & 4 \\
32 & 12
\end{array}\right] \\
& =\left[\begin{array}{cc}
5 & 0 \\
0 & 5
\end{array}\right]
\end{aligned}
$$

Ans.

$$
\begin{aligned}
& \text { (i) Vowels, } \mathrm{V}=\{a, e, i, o\} \\
& \therefore \quad n(\mathrm{~V})=4 \\
& \therefore \quad \mathrm{P}(a \text { vowel })=\frac{n(\mathrm{~V})}{n(\mathrm{~S})} \\
& =\frac{4}{16}=\frac{1}{4}
\end{aligned}
$$

Ans.

(ii) Consonants,

$$
\begin{aligned}
& C=\{b, c, d, f, g, h, j, k, l, m, n, p\} \\
\therefore \quad n(C) & =12 \\
\therefore \quad P(a \text { consonant }) & =\frac{n(\mathrm{C})}{n(S)} \\
& =\frac{12}{16}=\frac{3}{4}
\end{aligned}
$$

Ans.
(iii) None of the letters of the word 'median'

$$
\begin{array}{rlrl}
& (\mathrm{N}) & =\{b, c, f, g, h, j, k, l, o, p\} \\
\therefore \quad & n(\mathrm{~N}) & =10 \\
\therefore \quad & & \mathrm{P}(\mathrm{~N}) & =\frac{n(\mathrm{~N})}{n(\mathrm{~S})} \\
& & =\frac{10}{16}=\frac{5}{8}
\end{array}
$$

Ans.
Solution 6.
(a) Given, $\mathrm{AB}=7 \mathrm{~cm}, \angle \mathrm{CAB}=60^{\circ}, \mathrm{AC}=5 \mathrm{~cm}$ Steps of construction:

1. Construct triangle $A B C$ with given measurements.
2. Draw bisector of $\angle B A C$ which is the locus of points equidistant from AB and AC .
3. Draw bisector of $\angle \mathrm{ABC}$ which is the locus of points equidistant from $B A$ and $B C$.
4. Let the bisectors meet at O .

$$
=\frac{10}{100} \times ₹ 50=₹ 5
$$

\therefore Number of shares, (n)

$$
\begin{aligned}
& =\frac{₹ 450}{₹ 5}=90 \\
\therefore \quad \text { Investment } & =\text { M.V. } \times n \\
& =₹ 60 \times 90=₹ 5400 \quad \text { Ans. } \\
\therefore \quad \text { Yield percent } & =\frac{₹ 5}{₹ 60} \times 100 \% \\
& =\frac{25}{3}=8.33 \% \\
& =8 \% \text { (to the nearest whole no.) }
\end{aligned}
$$

(c) Here, sample space,

$$
(S)=\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p\}
$$

Ans.
(b) Given, N.V. = ₹ 50, M.V. = ₹ 60,

Total income $=₹ 450$, Rate of dividend $=10 \%$
\therefore Dividend per share

Ans.

$$
\therefore \quad n(S)=16
$$

5. Draw a perpendicular from O to $A B$ intersecting AB at D .
6. Taking O as centre and $O D$ as radius, construct a circle touching the three sides of triangle internally.
(i) Bisector of $\angle \mathrm{A}$
(ii) Bisector of $\angle \mathrm{B}$
(b) Given, number of persons $=77$.

Volume of air required by each person $=16 \mathrm{~m}^{3}$
\therefore Total volume of air required for 77 persons $=77 \times 16 \mathrm{~m}^{3}=1232 \mathrm{~m}^{3}$.

Radius (r) $=7 \mathrm{~m}$
Let the height of tent be $h \mathrm{~m}$.
Then, Volume of tent $=\frac{1}{3} \pi r^{2} h$

$$
\begin{array}{ll}
\Rightarrow & 1232=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times h \\
\Rightarrow & h=\frac{1232 \times 3}{22 \times 7}=24 \mathrm{~m}
\end{array}
$$

$\therefore \quad$ Required height $=24 \mathrm{~m}$
Now, slant height $(l)=\sqrt{h^{2}+r^{2}}$

$$
\begin{aligned}
& =\sqrt{24^{2}+7^{2}}=\sqrt{576+49} \\
& =\sqrt{625}=25 \mathrm{~m}
\end{aligned}
$$

$\therefore \quad$ The curved surface area

$$
\begin{aligned}
& =\pi r l \\
& =\frac{22}{7} \times 7 \times 25 \\
& =550 \mathrm{~m}^{2}
\end{aligned}
$$

(c) (i) Given, $\frac{7 m+2 n}{7 m-2 n}=\frac{5}{3}$

Using componendo and dividendo,

$$
\begin{array}{rlrl}
& & \frac{(7 m+2 n)+(7 m-2 n)}{(7 m+2 n)-(7 m-2 n)} & =\frac{5+3}{5-3} \\
\Rightarrow & \frac{7 m+7 m}{2 n+2 n} & =\frac{8}{2} \\
\Rightarrow & \frac{14 m}{4 n} & =\frac{4}{1} \\
\Rightarrow & \frac{7 m}{2 n} & =\frac{4}{1} \\
\Rightarrow & \frac{m}{n} & =\frac{4}{1} \times \frac{2}{7} \\
\Rightarrow & & m: n & =8: 7
\end{array}
$$

(ii) $\frac{m}{n}=\frac{8}{7} \Rightarrow \frac{m^{2}}{n^{2}}=\frac{64}{49}$

Using componendo and dividendo,

$$
\frac{m^{2}+n^{2}}{m^{2}-n^{2}}=\frac{64+49}{64-49}=\frac{113}{15}
$$

Ans.
Solution 7.
(b) (i) On graph : $\mathrm{A}(0,4), \mathrm{B}(2,3), \mathrm{C}(1,1), \mathrm{D}(2,0)$
(ii) $\mathrm{B}^{\prime}(-2,3), \mathrm{C}^{\prime}(-1,1), \mathrm{D}^{\prime}(-2,0)$

(iii)

Solution 8.
(a)

Marks	Mid values $\left(x_{i}\right)$	No. of students $\left(f_{i}\right)$	$d_{i}=x_{\boldsymbol{i}}$ $-\mathbf{A}$	t_{i} \boldsymbol{d}_{i} h	$f_{i} t_{\boldsymbol{i}}$
$0-10$	5	10	-20	-2	-20
$10-20$	15	9	-10	-1	-9
$20-30$	$25=\mathrm{A}$	25	0	0	0
$30-40$	35	30	10	1	30
$40-50$	45	16	20	2	32
$50-60$	55	10	30	3	30
		$\Sigma f_{i}=$			$\Sigma f_{i} t_{i}=$
		100			63

Let, $\mathrm{A}=25$ and $h=10$

$$
\begin{aligned}
\therefore \quad \text { Mean } & =A+\frac{\sum f_{i} t_{i}}{\sum f_{i}} \times h \\
& =25+\frac{63}{100} \times 10 \\
& =25+6 \cdot 3 \\
& =31 \cdot 3
\end{aligned}
$$

Ans.
Ans. (b) Given, $\angle \mathrm{BAQ}=30^{\circ}, \mathrm{AB}$ and AD are bisectors of $\angle \mathrm{CAQ}$ and $\angle \mathrm{PAC}$.

ICSE Mathematics-2017
(i)

$$
\begin{aligned}
\angle \mathrm{BAC}= & \angle \mathrm{BAQ}=30^{\circ} \\
& \quad(\mathrm{AB} \text { bisects } \angle \mathrm{CAQ}) \\
\angle \mathrm{CAQ}= & \angle \mathrm{BAC}+\angle \mathrm{BAQ} \\
= & 30^{\circ}+30^{\circ}=60^{\circ} \\
\angle \mathrm{PAC}= & 180^{\circ}-\angle \mathrm{CAQ}
\end{aligned}
$$

(Linear pair)

$$
=180^{\circ}-60^{\circ}=120^{\circ}
$$

$$
\angle \mathrm{CAD}=\frac{1}{2} \angle \mathrm{PAC}
$$

(AD bisects $\angle \mathrm{PAC}$)

$$
\begin{aligned}
& =\frac{1}{2} \times 120^{\circ}=60^{\circ} \\
\angle \mathrm{BAD} & =\angle \mathrm{BAC}+\angle \mathrm{CAD} \\
& =30^{\circ}+60^{\circ}=90^{\circ}
\end{aligned}
$$

$\therefore \mathrm{BD}$ is a diameter $\left(\because \angle \mathrm{BAD}=90^{\circ}=\right.$ angle in a semi-circle)

Hence Proved.
(ii) $\quad \angle \mathrm{ADB}=\angle \mathrm{BAC}=30^{\circ}$
(angles in an alternate segment are equal)

$$
\angle \mathrm{ACB}=\angle \mathrm{ADB}
$$

(angles in same segment are equal)
$\therefore \quad \angle \mathrm{BAC}=\angle \mathrm{ACB}=30^{\circ}$
$\therefore \quad \mathrm{AB}=\mathrm{BC}$
(sides opposite to equal angles are equal)
$\therefore \quad \triangle \mathrm{ABC}$ is an isosceles triangle. Hence Proved.
Solution 9.
(a) Given, $\angle \mathrm{DAE}=70^{\circ}$
(i) $\quad \angle \mathrm{BAD}+\angle \mathrm{DAE}=180^{\circ} \quad$ (Linear pair)
$\Rightarrow \quad \angle \mathrm{BAD}=180^{\circ}-70^{\circ}=110^{\circ}$
Now, $\angle \mathrm{BCD}+\angle \mathrm{BAD}=180^{\circ}$.
(Sum of opposite angles of cyclic quadrilateral is 180°)

$\Rightarrow \quad \angle \mathrm{BCD}=180^{\circ}-110^{\circ}$

$$
=70^{\circ}
$$

Ans.
(ii) $\quad \angle \mathrm{BOD}=2 \angle \mathrm{BCD}$
(Angle that an arc subtends at the centre is twice the angle at circumference of the circle)

$$
\begin{aligned}
& =2 \times 70^{\circ} \\
& =140^{\circ}
\end{aligned}
$$

(iii) $\quad \angle \mathrm{OBD}=\angle \mathrm{ODB}$

$$
\text { (} \mathrm{OB}=\mathrm{OD}=\text { radius })
$$

$\therefore \angle \mathrm{OBD}+\angle \mathrm{ODB}+\angle \mathrm{BOD}=180^{\circ}$
(Sum of angles in a triangle is 180°)
$\Rightarrow \quad \angle \mathrm{OBD}+\angle \mathrm{OBD}+140^{\circ}=180^{\circ}$

$$
(\because \angle \mathrm{OBD}=\angle \mathrm{ODB})
$$

$\Rightarrow \quad 2 \angle \mathrm{OBD}=180^{\circ}-140^{\circ}$
$\Rightarrow \quad \angle \mathrm{OBD}=\frac{40^{\circ}}{2}=20^{\circ}$
Ans.
(b) Given, $\mathrm{A}(-1,3), \mathrm{B}(4,2), \mathrm{C}(3,-2)$.
(i) Coordinates of centroid

$$
\begin{aligned}
G & =\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right) \\
& =\left(\frac{-1+4+3}{3}, \frac{3+2-2}{3}\right) \\
& =\left(\frac{6}{3}, \frac{3}{3}\right)=(2,1)
\end{aligned}
$$

Ans.
(ii) Slope of $\mathrm{AC}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-3}{3-(-1)}=\frac{-5}{4}$

Since, required line and the segment joining points A and C are parallel, so their slopes will be equal.
\therefore Slope of the required line $(m)=\frac{-5}{4}$
Let the equation of the line through G, be

$$
\begin{array}{rlrl}
& & y-y_{1} & =m\left(x-x_{1}\right) \\
\Rightarrow & y-1 & =-\frac{5}{4}(x-2) \\
\Rightarrow & & 4 y-4 & =-5 x+10 \\
\Rightarrow & 5 x+4 y-14 & =0
\end{array}
$$

which is the required equation of line through G and parallel to AC.

Ans.

$$
\begin{align*}
& \text { L.H.S. }=\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta} \tag{c}\\
& \\
& = \\
& =\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)} \\
& \\
& =\frac{\sin \theta\left\{1-2\left(1-\cos ^{2} \theta\right)\right\}}{\cos \theta\left(2 \cos ^{2} \theta-1\right)} \\
& \\
& =\frac{\left.\sin ^{2} \theta+\cos ^{2} \theta=1 \Rightarrow \sin ^{2} \theta=1-\cos ^{2} \theta\right]}{\cos \theta\left(2 \cos ^{2} \theta-1\right)} \\
& \\
& =\frac{\sin \theta\left(2 \cos ^{2} \theta-1\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)} \\
& \\
& =\frac{\sin \theta}{\cos \theta}=\tan \theta=\text { R.H.S. }
\end{align*}
$$

Hence Proved.

Solution 10.

(a) Let Vivek's present age be x years.
\therefore His brother's present age $=(47-x)$ years.
According to question,

$$
\begin{aligned}
& x(47-x)=550 \\
& \Rightarrow \quad 47 x-x^{2}=550 \\
& \Rightarrow \quad x^{2}-47 x+550=0 \\
& \Rightarrow \quad x^{2}-25 x-22 x+550=0 \\
& \Rightarrow x(x-25)-22(x-25)=0 \\
& \Rightarrow \quad(x-25)(x-22)=0 \\
& \Rightarrow \quad x-25=0 \text { or } x-22=0 \\
& \Rightarrow \quad x=25 \text { or } x=22
\end{aligned}
$$

When $x=25,47-x=47-25=22$
When $x=22,47-x=47-22=25$

> (does not satisfy the given condition)
\therefore Vivek's age $=x=25$ years.
His younger brother's age $=22$ years.
(b)

Wages (in ₹)	No. of Workers	Cumulative Frequency
$400-450$	2	2
$450-500$	6	8
$500-550$	12	20
$550-600$	18	38
$600-650$	24	62
$650-700$	13	75
$700-750$	5	80

$\therefore n=80$
(i) Median wage $=\frac{n}{2}$ th value.

$$
\begin{aligned}
& =\frac{80}{2} \text { th value } \\
& =40 \text { th value } \\
& =₹ 605
\end{aligned}
$$

Ans.
(ii) Lower quartile $=\frac{n}{4}$ th value $=20$ th value = ₹ 550 Ans.
(iii) No. of workers earning more than ₹ 625 daily $=80-50=30$

Solution 11.
(a) Let CD be the light house
$\therefore C D=60 \mathrm{~m}$.
Let $\mathrm{AD}=x \mathrm{~m}, \mathrm{BD}=y \mathrm{~m}$.
In $\triangle \mathrm{ACD}$,

ICSE Mathematics-2017

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{\mathrm{CD}}{\mathrm{AD}} \\
\Rightarrow \quad \sqrt{3} & =\frac{60}{x} \Rightarrow x=\frac{60}{\sqrt{3}} \\
\Rightarrow \quad x & =\frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{60 \sqrt{3}}{3} \\
& =20 \times 1.732 \\
& =34.64 \mathrm{~m}
\end{aligned}
$$

In $\triangle B C D$,

$$
\begin{aligned}
\tan 45^{\circ} & =\frac{\mathrm{CD}}{\mathrm{BD}} \\
1 & =\frac{60}{y} \\
\Rightarrow \quad y & =60 \mathrm{~m}
\end{aligned}
$$

\therefore Distance between two ships

$$
\begin{aligned}
& =x+y=34 \cdot 64+60 \\
& =94 \cdot 64 \mathrm{~m} \\
& =95 \mathrm{~m} \quad \text { (correct to nearest } \\
& \quad \text { whole number) }
\end{aligned}
$$

Ans.
(b) Given, $\angle \mathrm{PSR}=\angle \mathrm{QPR}, \mathrm{QP}=8 \mathrm{~cm}, \mathrm{PR}=6 \mathrm{~cm}$, $\mathrm{SR}=3 \mathrm{~cm}$.

(i) In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{SPR}$

$$
\begin{array}{rlr}
\angle \mathrm{PSR} & =\angle \mathrm{QPR} & \text { (Given) } \\
& \angle \mathrm{R}=\angle \mathrm{R} & \text { (Common angle) } \\
\therefore & \Delta \mathrm{PQR} \sim \Delta \mathrm{SPR} & \text { (AA axiom) } \\
& & \text { Hence Proved. }
\end{array}
$$

Since, corresponding sides of similar Δs are proportional

$$
\begin{align*}
& \frac{P Q}{P S}=\frac{Q R}{P R}=\frac{P R}{S R} \tag{ii}\\
& (\because \Delta \mathrm{PQR} \sim \Delta \mathrm{SPR}) \\
& \therefore \quad \frac{\mathrm{QR}}{\mathrm{PR}}=\frac{\mathrm{PR}}{\mathrm{PS}} \\
& \Rightarrow \quad \frac{\mathrm{QR}}{6}=\frac{6}{3} \\
& \Rightarrow \quad \mathrm{QR}=\frac{6 \times 6}{3}=12 \mathrm{~cm} \\
& \text { Also, } \quad \frac{\mathrm{PQ}}{\mathrm{PS}}=\frac{\mathrm{PR}}{\mathrm{SR}} \\
& \Rightarrow \quad \frac{8}{\mathrm{PS}}=\frac{6}{3} \\
& \Rightarrow \quad \mathrm{PS}=\frac{8 \times 3}{6} \\
& \Rightarrow \quad P S=4 \mathrm{~cm} \\
& \text { (iii) } \frac{\text { Area of } \triangle \mathrm{PQR}}{\text { Area of } \triangle \mathrm{SPR}}=\frac{\mathrm{PR}^{2}}{\mathrm{SR}^{2}} \\
& =\frac{6^{2}}{3^{2}} \\
& =\frac{36}{9}=\frac{4}{1}=4: 1 \\
& \text { Ans. }
\end{align*}
$$

(c) No. of months $(n)=3 \times 12=36, \mathrm{R}=7 \cdot 5 \%$, Interest = ₹ 8325
(i) Let monthly deposit be ₹ x

$$
\begin{array}{rlrl}
\therefore & \mathrm{I} & =\mathrm{P} \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100} \\
8325 & =x \times \frac{36 \times 37}{2 \times 12} \times \frac{7.5}{100} \\
\therefore & x & =\frac{8325 \times 2 \times 100}{3 \times 37 \times 7.5} \\
\therefore & & =2000
\end{array}
$$

\therefore Monthly deposit is ₹ 2,000 .
(ii) Total deposits $=₹ 2,000 \times 36=₹ 72,000$
$\therefore \quad$ Maturity value $=₹(72,000+8,325)$

$$
=₹ 80,325
$$

Ans.

QUESTIONS

SECTION—A (40 Marks)
 (Attempt all questions from this Section)

Question 1.

(a) Using remainder theorem, find the value of k if on dividing $2 x^{3}+3 x^{2}-k x+5$ by $x-2$ leaves a remainder 7.
(b) Given $A=\left[\begin{array}{rr}2 & 0 \\ -1 & 7\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $A^{2}=9 A+m I$.
Find m.
(c) The mean of following numbers is 68 . Find the value of ' x '.
$45,52,60, x, 69,70,26,81$ and 94.
Hence, estimate the median.

Question 2.

(a) The slope of a line joining $P(6, k)$ and $Q(1-3 k, 3)$ is $\frac{1}{2}$. Find:
(i) k
(ii) Midpoint of $P Q$, using the value of ' k ' found in (i)
(b) Without using trigonometrical tables, evaluate: :* [4] $\operatorname{cosec}^{2} 57^{\circ}-\tan ^{2} 33^{\circ}+\cos 44^{\circ} \operatorname{cosec} 46^{\circ}-\sqrt{2} \cos 45^{\circ}$ $-\tan ^{2} 60^{\circ}$
(c) A certain number of metallic cones, each of radius 2 cm and height 3 cm are melted and recast into a solid sphere of radius 6 cm . Find the number of cones. [3]
Question 3.
(a) Solve the following inequation, write the solution set and represent it on the number line.

$$
-3(x-7) \geq 15-7 x>\frac{x+1}{3}, x \in R
$$

where R is a set of real numbers.
(b) In the figure given below, $A D$ is a diameter. O is the centre of the circle. $A D$ is parallel to $B C$ and $\angle C B D=$ 32°. Find:
[4]
(i) $\angle O B D$
(ii) $\angle A O B$
(iii) $\angle B E D$
(c) If $(3 a+2 b):(5 a+3 b)=18: 29$. Find $a: b$.
[3] Question 4.
(a) A game of numbers has cards marked with 11, 12, 13, \qquad 40. A card is drawn at random. Find the probability that the number on the card drawn is : [3]
(i) A perfect square
(ii) Divisible by 7
(b) Use graph paper for this question.
(Take $2 \mathrm{~cm}=1$ unit along both X and Y axis.)
Plot the points $O(0,0), A(-4,4), B(-3,0)$ and C $(0,-3)$
(i) Reflect points A and B on the Y-axis and name them A^{\prime} and B^{\prime} respectively. Write down their coordinates.
(ii) Name the figure $O A B C B^{\prime} A^{\prime}$.
(iii) State the line of symmetry of this figure.**
(c) Mr. Lalit invested ₹ 5000 at a certain rate of interest, compounded annually for two years. At the end of first year it amounts to ₹ 5325. Calculate,
(i) The rate of interest.
(ii) The amount at the end of second year, to the nearest rupee.**

SECTION—B (40 Marks)

(Attempt any four questions from this Section)
Question 5.
(a) Solve the quadratic equation $x^{2}-3(x+3)=0$; Give your answer correct to two significant figures.
(b) A page from the savings bank account of Mrs. Ravi is given below.**
[4]
]

[^1]

Date	Particulars	Withdrawal (₹)	Deposit (₹)	Balance (₹)
April 3rd, 2006	B/F			6000
April 7th	By Cash		2300	8300
April 15th	By Cheque		3500	11800
May 20th	To Self	4200		7600
June 10th	By Cash		5800	13400
June 15th	To Self	3100		10300
August 13th	By Cheque		1000	11300
August 25th	To Self	7400		3900
September 6th 2006	By Cash		2000	5900

She closed the account on 30th September, 2006. Calculate the interest Mrs. Ravi earned at the end of 30th September, 2006 at 4.5\% per annum interest. Hence, find the amount she receives on closing the account.
(c) In what time will ₹ 1500 yield ₹ 1996.50 as compound interest at 10% per annum compounded annually ?**
[3]
Question 6.
(a) Construct a regular hexagon of side 5 cm . Hence construct all its lines of symmetry and name them.**
(b) In the given figure $P Q R S$ is a cyclic quadrilateral $P Q$ and SR produced meet at T.
(i) Prove $\triangle T P S \sim \triangle T R Q$.
(ii) Find $S P$ if $T P=18 \mathrm{~cm}, R Q=4 \mathrm{~cm}$ and $T R=6 \mathrm{~cm}$.
(iii) Find area of quadrilateral $P Q R S$ if area of $\triangle P T S$ $=27 \mathrm{~cm}^{2}$.

(c) Given $A=\left[\begin{array}{cc}4 \sin 30^{\circ} & \cos 0^{\circ} \\ \cos 0^{\circ} & 4 \sin 30^{\circ}\end{array}\right]$ and $B=\left[\begin{array}{l}4 \\ 5\end{array}\right]$
[3] If $A X=B$
(i) Write the order of matrix X.
(ii) Find the matrix ' X '.

Question 7.

(a) An aeroplane at an altitude of 1500 metres finds that two ships are sailing towards it in the same direction. The angles of depression as observed from the aeroplane are 45° and 30° respectively. Find the distance between the two ships.
** Answer is not given due to change in the present syllabus.
(b) The table shows the distribution of the scores obtained by 160 shooters in a shooting competition. Use a graph sheet and draw an ogive for the distribution. (Take $2 \mathrm{~cm}=10$ scores on the X-axis and $2 \mathrm{~cm}=20$ shooters on the Y-axis)

Score	No. of Shooters
$0-10$	9
$10-20$	13
$20-30$	20
$30-40$	26
$40-50$	30
$50-60$	22
$60-70$	15
$70-80$	10
$80-90$	8
$90-100$	7

Use your graph to estimate the following :
(i) The median.
(ii) The interquartile range.
(iii) The number of shooters who obtained a score of more than 85%.
Question 8.
(a) If $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$ show that $\frac{x^{3}}{a^{3}}+\frac{y^{3}}{b^{3}}+\frac{z^{3}}{c^{3}}=\frac{3 x y z}{a b c}$
(b) Draw a line $A B=5 \mathrm{~cm}$. Mark a point C on $A B$ such that $A C=3 \mathrm{~cm}$. Using a ruler and a compass only, construct :
(i) A circle of radius 2.5 cm , passing through A and C.
(ii) Construct two tangents to the circle from the external point B. Measure and record the length of the tangents.
(c) A line $A B$ meets X-axis at A and Y-axis at B. $P(4,-1)$ divides $A B$ in the ratio 1:2.
(i) Find the coordinates of A and B.
(ii) Find the equation of the line through P and perpendicular to $A B$.

Question 9.
(a) A dealer buys an article at a discount of 30% from the wholesaler, the marked price being ₹ 6,000 . The dealer sells it to a shopkeeper at a discount of 10% on the marked price. If the rate of VAT is 6% find. ${ }^{* *}$
[3]
(i) The price paid by the shopkeeper including the tax.
(ii) The VAT paid by the dealer.
(b) The given figure represents a kite with a circular and a semicircular motifs stuck on it. The radius of circle is 2.5 cm and the semicircle is 2 cm . If diagonals $A C$ and $B D$ are of lengths 12 cm and 8 cm respectively, find the area of the :**
[4]
(i) shaded part. Give your answer correct to the nearest whole number.
(ii) unshaded part.

(c) A model of a ship is made to a scale 1:300
(i) The length of the model of the ship is 2 m . Calculate the length of the ship.
(ii) The area of the deck ship is $180,000 \mathrm{~m}^{2}$. Calculate the area of the deck of the model.
(iii) The volume of the model is $6.5 \mathrm{~m}^{3}$. Calculate the volume of the ship.
Question 10.
(a) Mohan has a recurring deposit account in a bank for 2 years at 6% p.a. simple interest. If he gets ₹ 1200 as interest at the time of maturity, find :
(i) the monthly instalment
(ii) the amount of maturity.
** Answer is not given due to change in the present syllabus.
(b) The histogram below represents the scores obtained by 25 students in a Mathematics mental test. Use the data to :
(i) Frame a frequency distribution table.
(ii) To calculate mean.
(iii) To determine the Modal class.

(c) A bus covers a distance of 240 km at a uniform speed. Due to heavy rain its speed gets reduced by $10 \mathrm{~km} / \mathrm{h}$ and as such it takes two hrs longer to cover the total distance. Assuming the uniform speed to be ' x ' km/h, form an equation and solve it to evaluate ' x '.
Question 11.
(a) Prove that $\frac{\cos A}{1+\sin A}+\tan A=\sec A$.
(b) Use ruler and compasses only for the following question. All construction lines and arcs must be clearly shown.

(i) Construct a $\triangle A B C$ in which $B C=6.5 \mathrm{~cm}$, $\angle A B C=60^{\circ}, A B=5 \mathrm{~cm}$.
(ii) Construct the locus of points at a distance of 3.5 cm from A.
(iii) Construct the locus of points equidistant from AC and $B C$.
(iv)Mark 2 points X and Y which are at a distance of 3.5 cm from A and also equidistant from $A C$ and $B C$. Measure XY.
(c) Ashok invested ₹ 26,400 on 12%, ₹ 25 shares of a company. If he receives a dividend of ₹ 2,475 , find the:

[3]

(i) number of shares he bought
(ii) Market value of each share

SECTION—A

Solution 1.
(a) Here,

$$
\begin{equation*}
f(x)=2 x^{3}+3 x^{2}-k x+5 \tag{i}
\end{equation*}
$$

and

$$
x-2=0 \Rightarrow x=2
$$

Given, remainder is $7 \Rightarrow f(2)=7$
Putting $x=2$ in equation (i), we get

$$
f(2)=2(2)^{3}+3(2)^{2}-k(2)+5
$$

$\Rightarrow 16+12-2 k+5=7$
$\Rightarrow \quad 2 k=26$
$\Rightarrow \quad k=13$.
(b) Here, $\mathrm{A}=\left[\begin{array}{cc}2 & 0 \\ -1 & 7\end{array}\right]$

$$
\begin{aligned}
\Rightarrow \quad \mathrm{A}^{2}=\mathrm{A} \cdot \mathrm{~A} & =\left[\begin{array}{rr}
2 & 0 \\
-1 & 7
\end{array}\right]\left[\begin{array}{rr}
2 & 0 \\
-1 & 7
\end{array}\right] \\
& =\left[\begin{array}{rr}
4+0 & 0+0 \\
-2-7 & 0+49
\end{array}\right] \\
& =\left[\begin{array}{rr}
4 & 0 \\
-9 & 49
\end{array}\right]
\end{aligned}
$$

Given, $\mathrm{A}^{2}=9 \mathrm{~A}+m \mathrm{I}$

$$
\begin{aligned}
& \therefore \quad 9\left[\begin{array}{rr}
2 & 0 \\
-1 & 7
\end{array}\right]+m\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
4 & 0 \\
-9 & 49
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{rr}
18 & 0 \\
-9 & 63
\end{array}\right]+\left[\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right]=\left[\begin{array}{cc}
4 & 0 \\
-9 & 49
\end{array}\right] \\
& \Rightarrow \quad\left[\begin{array}{rr}
18+m & 0 \\
-9 & 63+m
\end{array}\right]=\left[\begin{array}{rc}
4 & 0 \\
-9 & 49
\end{array}\right]
\end{aligned}
$$

On comparing both sides, we get

$$
18+m=4 \text { and } 63+m=49
$$

which gives $m=-14$. Ans.
(c) Arithmetic mean $=\frac{\Sigma x}{n}$

$$
\begin{array}{cc}
& =\frac{45+52+60+x+69+70+26+81+94}{9} \\
\Rightarrow & 68=\frac{497+x}{9} \\
\Rightarrow & 612=497+x \\
\Rightarrow & x=612-497 \\
\Rightarrow & x=115
\end{array}
$$

On arranging the given terms in ascending order of magnitude, we get

$$
26,45,52,60,69,70,81,94,115
$$

Since number of terms are odd

$$
\begin{aligned}
\therefore \quad \text { Median } & =\left(\frac{n+1}{2}\right)^{\text {th }} \text { term } \\
& =\left(\frac{9+1}{2}\right)^{\text {th }} \text { term }
\end{aligned}
$$

$$
=5^{\text {th }} \text { term }=69
$$

So, the median is 69 .
Ans.

Solution 2.

(a) (i) Let $\mathrm{P}(6, k)$ be $\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}(1-3 k, 3)$ be $\left(x_{2}, y_{2}\right)$
Given, slope of a line PQ is $\frac{1}{2}$

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1}{2}
$$

Here, $x_{1}=6, x_{2}=1-3 \mathrm{k}, y_{1}=k, y_{2}=3$

$$
\begin{aligned}
\Rightarrow & \frac{3-k}{(1-3 k)-6} & =\frac{1}{2} \\
\Rightarrow & \frac{3-k}{-5-3 k} & =\frac{1}{2} \\
\Rightarrow & 2(3-k) & =-5-3 k \\
\Rightarrow & 6-2 k & =-5-3 k \\
\Rightarrow & k & =-11
\end{aligned}
$$

Ans.
(ii) Coordinates P is $(6,-11)$ and Q is $(34,3)$ Midpoint of $P(6,-11)$ and $Q(34,3)$.

$$
\Rightarrow \quad\left(\frac{6+34}{2}, \frac{-11+3}{2}\right)=(20,-4) \quad \text { Ans. }
$$

(c) Volume of metallic cone

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi \times(2)^{2} \times 3=4 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of solid sphere

$$
\begin{aligned}
& =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi \times(6)^{3} \\
& =288 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Number of cones

$$
\begin{aligned}
& =\frac{\text { Volume of solid sphere }}{\text { Volume of metallic cone }} \\
& =\frac{288 \pi}{4 \pi}=72
\end{aligned}
$$

\therefore Number of metallic cones are 72 .
Ans.

Solution 3.

(a) Given, $-3(x-7) \geq 15-7 x>\frac{x+1}{3}$

$$
\begin{aligned}
& \Rightarrow-3(x-7) \geq 15-7 x \text { and } \Rightarrow 15-7 x>\frac{x+1}{3} \\
& \Rightarrow-3 x+21 \geq 15-7 x \text { and } \Rightarrow 45-21 x>x+1 \\
& \Rightarrow 7 x-3 x \geq 15-21 \text { and } \Rightarrow-21 x-x>1-45 \\
& \Rightarrow \quad 4 x \geq-6 \quad \text { and } \Rightarrow-22 x>-44 \\
& \Rightarrow \quad x \geq-\frac{3}{2} \quad \text { and } \Rightarrow \quad x<2
\end{aligned}
$$

On simplifying, the given inequation reduces to $-\frac{3}{2} \leq x<2$ and the required number line is

$$
\stackrel{(3 / 2)}{\leftarrow} \begin{gathered}
1 \\
-2
\end{gathered}
$$

Solution 4. set is $\left\{x:-\frac{3}{2} \leq x<2, x \in \mathrm{R}\right\} \quad$ Ans.
(b) (i) Since, AD is parallel to BC and BD is a transversal.

$$
\begin{aligned}
\therefore \quad \angle \mathrm{ODB}= & \angle \mathrm{CBD} \\
& \text { (Alternate interior angles) }
\end{aligned}
$$

$$
\text { Also, } \begin{aligned}
\mathrm{OB} & =\mathrm{OD} \\
\angle \mathrm{OBD} & =\angle \mathrm{ODB}=32^{\circ} \quad \text { (Radii) }
\end{aligned}
$$

\therefore
(ii)

$$
\angle \mathrm{AOB}=2 \angle \mathrm{ADB}
$$

(The angle that an arc of a circle subtends at the centre is double which it subtends at any point on the remaining part of the circle)

$$
\begin{aligned}
& =2 \times 32^{\circ} \\
& =64^{\circ}
\end{aligned}
$$

Ans.
(iii) In $\triangle \mathrm{AOB}(\mathrm{OA}=\mathrm{OB}$, radii of circle)

$$
\begin{aligned}
\angle \mathrm{OAB}+\angle \mathrm{AOB}+\angle \mathrm{OBA} & =180^{\circ} \\
\angle \mathrm{OAB}+64^{\circ}+\angle \mathrm{OAB} & =180^{\circ} \\
2 \angle \mathrm{OAB} & =180^{\circ}-64^{\circ} \\
& =116^{\circ} \\
\angle \mathrm{OAB} & =58^{\circ} \\
\angle \mathrm{OAB}=\angle \mathrm{BED} & =58^{\circ}
\end{aligned}
$$

(Angles in the same segment)
Ans.
(c) Here, $\frac{3 a+2 b}{5 a+3 b}=\frac{18}{29}$

$$
\begin{aligned}
87 a+58 b & =90 a+54 b \\
-90 a+87 a & =-58 b+54 b \\
-3 a & =-4 b \\
\frac{a}{b} & =\frac{4}{3}
\end{aligned}
$$

$$
\text { i.e., } \quad a: b=4: 3
$$

Ans.
Solution 4.
(a) The possible outcomes are 11, 12, 13 40. Total number of all possible outcomes i.e., $n(S)=30$
(i) For getting a perfect square :

The favourable outcomes are : $16,25,36$
No. of favourable outcomes $n(A)=3$

$$
\mathrm{P}(\mathrm{~A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}=\frac{3}{30}=\frac{1}{10}
$$

Ans.
(ii) For getting a number divisible by 7 :

The favourable outcomes are : $14,21,28,35$.
No. of favourable outcomes, n (B) $=4$
Required probability

$$
\mathrm{P}(\mathrm{~B})=\frac{n(\mathrm{~B})}{n(\mathrm{~S})}=\frac{4}{30}=\frac{2}{15}
$$

(b) (i) Coordinates of $\mathrm{A}^{\prime}=(4,4)$

Coordinates of $B^{\prime}=(3,0)$
(ii) Irregular Hexagon or Concave region
cale : $1 \mathrm{~cm}=1$ unit on both axis $\mathrm{A}^{\prime}(4,4)$

SECTION-B

Solution 5.
(a) Given, $x^{2}-3(x+3)=0$

$$
x^{2}-3 x-9=0
$$

Compare it with $a x^{2}+b x+c=0$, we get
$a=1, b=-3$ and $c=-9$
$\therefore \quad \mathrm{D}=b^{2}-4 a c=(-3)^{2}-4 \times 1 \times(-9)$

$$
=9+36=45
$$

$$
\therefore \quad x=\frac{3 \pm \sqrt{45}}{2 \times 1}
$$

$\left[\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right]$
$\Rightarrow \quad x=\frac{3 \pm 6.708}{2}$
$\Rightarrow \quad x=\frac{3+6.708}{2}$ and $\frac{3-6.708}{2}$
$\Rightarrow \quad x=4.854$ and -1.854
The roots of given equation are 4.85 and -1.85 .
Ans.
Solution 6.
(b) (i) In Δ TPS and Δ TRQ

$$
\begin{aligned}
& \angle \mathrm{STP}=\angle \mathrm{QTR} \quad \text { (common) } \\
& \angle \mathrm{TPS}=\angle \mathrm{TRQ}
\end{aligned}
$$

(\because Exterior angle of cyclic quadrilateral $=$ Interior opposite angle)
$\therefore \quad \Delta$ TPS $\sim \Delta$ TRQ
[By AA similarity] Hence Proved.
(ii) Since \triangle TPS $\sim \Delta T R Q$

$$
\therefore \quad \frac{\mathrm{TR}}{\mathrm{TP}}=\frac{\mathrm{RQ}}{\mathrm{SP}}
$$

(corresponding sides of similar Ds are proportional)

$$
\begin{aligned}
& \frac{6}{18}=\frac{4}{\mathrm{SP}} \\
& \mathrm{SP}=\frac{4 \times 18}{6}=12 \mathrm{~cm}
\end{aligned}
$$

Ans.
(iii) We know that the ratio between the areas of two similar triangles is equal to the ratio between the squares of its corresponding sides.

$$
\begin{aligned}
& \frac{\operatorname{ar}(\Delta \mathrm{PTS})}{\operatorname{ar}(\Delta \mathrm{RTQ})}=\frac{(\mathrm{SP})^{2}}{(\mathrm{QR})^{2}}=\frac{(12)^{2}}{(4)^{2}}=\frac{9}{1} \\
& \frac{27}{\operatorname{ar}(\Delta \mathrm{RTQ})}=\frac{9}{1} \\
& \operatorname{ar}(\Delta \mathrm{RTQ})=3 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore ar (quadrilateral PQRS)

$$
\begin{aligned}
& =\operatorname{ar}(\Delta \mathrm{PTS})-\operatorname{ar}(\Delta \mathrm{RTQ}) \\
& =27-3=24 \mathrm{~cm}^{2}
\end{aligned}
$$

Ans.
(c) (i) Given, $\mathrm{A}=\left[\begin{array}{rr}4 \sin 30^{\circ} & \cos 0^{\circ} \\ \cos 0^{\circ} & 4 \sin 30^{\circ}\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$

$$
\mathrm{A}=\left[\begin{array}{rr}
4 \times \frac{1}{2} & 1 \\
1 & 4 \times \frac{1}{2}
\end{array}\right]
$$

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

\because The order of matrix A is 2×2
and the order of matrix B is 2×1
\therefore The order of matrix X is 2×1.
Ans.
(ii) Let $\mathrm{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$

$$
\therefore \quad\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

$$
\Rightarrow \quad\left[\begin{array}{l}
2 x+y \\
x+2 y
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

On comparing, we get

$$
\begin{align*}
& 2 x+y=4 \tag{i}\\
& x+2 y=5 \tag{ii}
\end{align*}
$$

On multiplying equation (ii) by 2 and subtracting it from equation (i)

$$
\begin{aligned}
& 2 x+y=4 \\
& 2 x+4 y=10 \\
&-\quad-\quad- \\
& \hline-3 y=-6 \\
& y=2
\end{aligned}
$$

From equation (i)

$$
\begin{aligned}
& \quad \begin{aligned}
2 x+y & =4 \\
\Rightarrow \quad 2 x+2 & =4 \\
x & =1
\end{aligned} \\
& \therefore \text { The matrix } X=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

Ans.

Solution 7.

(a) Let AB be the altitude and C and D be the positions of two ships.
In right angled triangle $A B C$,

$$
\begin{aligned}
\tan 45^{\circ} & =\frac{1500}{\mathrm{BC}} \\
1 & =\frac{1500}{\mathrm{BC}} \\
\mathrm{BC} & =1500 \mathrm{~m}
\end{aligned}
$$

In right angled triangle $A B D$,

$$
\tan 30^{\circ}=\frac{1500}{\mathrm{BD}}
$$

\therefore Distance between the two ships

$$
\begin{aligned}
& =C D \\
& =B D-B C \\
& =2598-1500
\end{aligned}
$$

$$
=1098 \mathrm{~m} \quad \text { Ans. }
$$

(b)

Scores	No. of Shooters	Cumulative frequency (c. f.)
$0 — 10$	9	9
$10 — 20$	13	22
$20-30$	20	42
$30-40$	26	68
$40 — 50$	30	98
$50 — 60$	22	120
$60 — 70$	15	135
$70-80$	10	145
$80-90$	8	153
$90-100$	7	160

Using graph $=160$
(i) Since, $n=160$ (even)

$$
\begin{aligned}
\text { Median } & =\left(\frac{n}{2}\right)^{\text {th }} \text { term } \\
& =\left(\frac{160}{2}\right)^{\text {th }} \text { term } \\
& =80 \text { th term } \\
& =44
\end{aligned}
$$

Ans.
(ii) Lower quartile

$$
\begin{aligned}
\left(\mathrm{Q}_{1}\right) & =\left(\frac{n}{4}\right)^{\text {th }} \text { term } \\
& =\left(\frac{160}{4}\right)^{\text {th }}=40^{\text {th }} \text { term. } \\
& =29
\end{aligned}
$$

Upper quartile

$$
\begin{aligned}
\left(Q_{3}\right) & =\left(\frac{3 n}{4}\right)^{\text {th }} \text { term } \\
& =\left(\frac{3 \times 160}{4}\right)^{\text {th }} \text { term } \\
& =120^{\text {th }} \text { term. } \\
& =60
\end{aligned}
$$

Inter-quartile range

$$
\begin{aligned}
& =Q_{3}-Q_{1} \\
& =60-29=31
\end{aligned}
$$

Ans.
(iii) Since, 85% scores $=85 \%$ of $100=85$.

Through mark for 85 on X-axis, draw a vertical line which meets the ogive at any point. Through that point, draw a horizontal line which meets the Y-axis at the mark of 149.

\therefore The no. of shooters who obtained a score of more than 85%

$$
=160-149=11
$$

Ans.
Note: Instead of $2 \mathrm{~cm}=1$ unit, we have taken 1 cm $=1$ unit both axes.

Solution 8.

(a) Let $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k$
then $x=a k, y=b k$ and $z=c k$.
Putting the values of x, y and z, in the given equation, we get

$$
\begin{aligned}
\text { L.H.S. } & =\frac{x^{3}}{a^{3}}+\frac{y^{3}}{b^{3}}+\frac{z^{3}}{c^{3}} \\
& =\frac{(a k)^{3}}{a^{3}}+\frac{(b k)^{3}}{b^{3}}+\frac{(c k)^{3}}{c^{3}} \\
& =\frac{a^{3} k^{3}}{a^{3}}+\frac{b^{3} k^{3}}{b^{3}}+\frac{c^{3} k^{3}}{c^{3}} \\
& =k^{3}+k^{3}+k^{3}=3 k^{3}
\end{aligned}
$$

ICSE Mathematics-2016

$$
\begin{array}{rlrl}
\text { R.H.S. }= & \frac{3 x y z}{a b c} & & x=6 \\
& \text { (Put the value of } x, y \text { and } z) & \text { and } & y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \\
= & \frac{3(a k)(b k)(c k)}{a b c} & & -1=\frac{1 \times y+2 \times 0}{1+2} \\
& =3 k^{3} & -1=\frac{y}{3}
\end{array}
$$

$$
\therefore \quad y=-3
$$

\therefore Coordinates of A are $(6,0)$ and coordinates of B are $(0,-3)$.

Ans.
2. Mark a point C on $A B$ such that $A C=3 \mathrm{~cm}$.
(ii) Slope of $\mathrm{AB}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-0}{0-6}=\frac{-3}{-6}=\frac{1}{2}$

Now, slope of the line perpendicular to $A B$

$$
\begin{aligned}
& =-\frac{1}{\text { slope of } \mathrm{AB}} \\
& =-\frac{1}{1 / 2}=-2
\end{aligned}
$$

Equation of line, which passes through $\mathrm{P}(4,-1)$, and \perp to $A B$ and has slope -2 is

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-(-1) & =-2(x-4) \\
y+1 & =-2 x+8 \\
\text { Hence, } \quad 2 x+y & =7
\end{aligned}
$$

Solution 9.
(c) Given, \quad scale factor $(k)=\frac{1}{300}$
(i) $\frac{\text { Length of the model }}{\text { Length of the ship }}=k=\frac{1}{300}$
$\Rightarrow \quad \frac{2}{\text { Length of ship }}=\frac{1}{300}$
Length of the ship $=2 \times 300=600 \mathrm{~m}$
Ans.
(ii) $\frac{\text { Area of the deck of the model }}{\text { Area of the deck of the ship }}=k^{2}$

$$
\frac{\text { Area of deck of model }}{1,80,000}=\frac{1 \times 1}{300 \times 300}
$$

Area of the deck of the model

$$
=\frac{180,000}{300 \times 300}=2 \mathrm{~m}^{2} \quad \text { Ans. }
$$

(iii) $\frac{\text { Volume of model }}{\text { Volume of the ship }}=k^{3}$

$$
\Rightarrow \quad \frac{6.5}{\text { Volume of ship }}=\frac{1 \times 1 \times 1}{300 \times 300 \times 300}
$$

Volume of the ship $=6.5 \times 300 \times 300 \times 300$

$$
=17,55,00,000 \mathrm{~m}^{3} \quad \text { Ans. }
$$

Solution 10.

(a) (i) Given, number of months $(n)=24$ and rate of interest $(r)=6 \%$ and Interest $=₹ 1,200$

$$
\begin{aligned}
\mathrm{I} & =\mathrm{P} \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100} \\
1200 & =\mathrm{P} \times \frac{24(24+1)}{2 \times 12} \times \frac{6}{100} \\
\mathrm{P} & =\frac{1,200 \times 24 \times 100}{6 \times 24 \times 25} \\
& =₹ 800
\end{aligned}
$$

$\therefore \quad$ Monthly instalment $=₹ 800$
(ii) Sum deposited = ₹ 800×24

$$
=₹ 19,200
$$

Amount of maturity $=₹ 19,200+₹ 1,200$

$$
=₹ 20,400
$$

Ans.
(b) (i) Using the given data, frequency distribution table is as given below :

Marks	No. of Students (f)	Class mark (x)	$f x$
$0 — 10$	2	5	10
$10 — 20$	5	15	75
$20 — 30$	8	25	200
$30 — 40$	4	35	140
$40 — 50$	6	45	270
	$\Sigma f=n=25$		$\Sigma f \cdot x=$
			695

(ii) To Calculate Mean : Construct expanded table with class mark and $f x$ as given above.

$$
\therefore \quad n=\Sigma f=25 \text { and } \Sigma f x=695
$$

$$
\text { Mean }=\frac{\Sigma f x}{n}=\frac{695}{25}=27.8
$$

Ans.
(iii) 1. In the given histogram, inside the highest rectangle, which represents the maximum frequency (or modal class) draw two lines AC and BD diagonally from the upper corners to C and D of adjacent rectangles.
2. Both the lines meet at a point K. Through the point K, draw KL perpendicular to the horizontal axis.
3. The value of point L on the horizontal axis represents the value of mode.
\therefore Mode $=24$ and the modal class $=20-30$.

(c) Let the uniform speed of bus be $x \mathrm{~km} / \mathrm{h}$.
\therefore Time taken by it to cover $240 \mathrm{~km}=\frac{240}{x}$ hrs.

$$
\left[\because \mathrm{T}=\frac{\mathrm{D}}{\mathrm{~S}}\right]
$$

Reduced speed of bus $=(x-10) \mathrm{km} / \mathrm{hr}$
\therefore So, time taken by the bus to cover 240 km

$$
=\frac{240}{x-10} \mathrm{hrs}
$$

Now, according to the given condition

$$
\begin{aligned}
\therefore & \frac{240}{x-10}-\frac{240}{x} & =2 \\
\Rightarrow & 240\left(\frac{1}{x-10}-\frac{1}{x}\right) & =2 \\
\Rightarrow & 120\left(\frac{x-(x-10)}{x(x-10)}\right) & =1 \\
\Rightarrow & 120\left(\frac{10}{x(x-10)}\right) & =1 \\
\Rightarrow & x^{2}-10 x-1200 & =0
\end{aligned}
$$

On splitting the middle term

$$
\left.\begin{array}{rlrl}
\Rightarrow & x^{2}-40 x+30 x-1200 & =0 \\
\Rightarrow & x(x-40)+30(x-40) & =0 \\
\Rightarrow & & (x-40)(x+30) & =0 \\
\Rightarrow & & x & =40 \\
& \text { or } & & x
\end{array}\right)=-30 \text { 而 }
$$

Since, speed cannot be negative.
Hence, the value of $x=40$.
i.e., the uniform speed of bus is $40 \mathrm{~km} / \mathrm{hr}$. Ans.

ICSE Mathematics-2016

Solution 11.
(a)

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\cos \mathrm{A}}{1+\sin \mathrm{A}}+\tan \mathrm{A} \\
& =\frac{\cos \mathrm{A}}{1+\sin \mathrm{A}}+\frac{\sin \mathrm{A}}{\cos \mathrm{~A}} \quad\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right] \\
& =\frac{\cos ^{2} \mathrm{~A}+\sin \mathrm{A}+\sin ^{2} \mathrm{~A}}{(1+\sin \mathrm{A}) \cos \mathrm{A}} \\
& =\frac{1+\sin \mathrm{A}}{(1+\sin \mathrm{A}) \cos \mathrm{A}} \\
& =\frac{1}{\cos \mathrm{~A}}=\sec \mathrm{A}=\text { R.H.S. }
\end{aligned}
$$

Hence Proved.
(b) Steps of Construction:
(i) 1. Draw a line $B C=6.5 \mathrm{~cm}$.
2. At B, draw $B Z$ making an angle of 60° with BC.
3. With B as centre, draw an arc of 5 cm . It cuts BZ at point A.
4. Join AC.

(ii) Taking A as centre and 3.5 cm as radius, draw a circle which is the required locus of points.
(iii) Draw the bisector of angle of vertex ACB, which is the required locus of points equidistant from AC and BC .
From A cut the arcs of length 3.5 cm on the line which is the angle bisector of $\angle \mathrm{BCA}$ and touch the circle with centre A. The required points are X and Y .
(iv) Length of $X Y=5 \mathrm{~cm}$.
(c) (i) Given, nominal value of share $=₹ 25$, Rate of dividend $=12 \%$
Total dividend $=₹ 2,475$
Total money invested $=₹ 26,400$
Dividend on each share

$$
\begin{aligned}
& =\text { Rate of dividend } \times \mathrm{N} . \mathrm{V} . \\
& =\frac{12}{100} \times 25=₹ 3
\end{aligned}
$$

No. of shares bought
$=\frac{\text { Total dividend }}{\text { Dividend on each share }}$
$=\frac{2475}{3}$
$=825 \quad$ Ans.
(ii) Market value of each share

$$
\begin{aligned}
& =\frac{\text { Sum invested }}{\text { No. of shares }} \\
& =\frac{26,400}{825} \\
& =₹ 32 .
\end{aligned}
$$

Ans.

Questions

SECTION—A (40 Marks)

(Attempt all questions from this Section)

Question 1.

(a) A shopkeeper bought an article for ₹ 3,450. He marks the price of the article 16% above the cost price. The rate of sales tax charged on the article is 10%. Find the:**
(i) marked price of the article.
(ii) price paid by a customer who buys the article. [3]
(b) Solve the following inequation and write the solution set:

$$
13 x-5<15 x+4<7 x+12, x \in R
$$

Represent the solution on a real number line.
(c) Without using trigonometric tables evaluate :**

$$
\frac{\sin 65^{\circ}}{\cos 25^{\circ}}+\frac{\cos 32^{\circ}}{\sin 58^{\circ}}-\sin 28^{\circ} \cdot \sec 62^{\circ}+\operatorname{cosec}^{2} 30^{\circ}
$$

Question 2.

(a) If $A=\left[\begin{array}{ll}3 & x \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}9 & 16 \\ 0 & -y\end{array}\right]$, find x and y when $A^{2}=B$.
(b) The present population of a town is 2,00,000. Its population increases by 10% in the first year and 15% in the second year. Find the population of the town at the end of the two years.**
(c) Three vertices of a parallelogram ABCD taken in order are $A(3,6), B(5,10)$ and $C(3,2)$ find:
(i) the coordinates of the fourth vertex D.
(ii) length of diagonal $B D .{ }^{* *}$
(iii) equation of side $A B$ of the parallelogram $A B C D$.

Question 3.
(a) In the given figure, $A B C D$ is a square of side 21 cm . $A C$ and $B D$ are two diagonals of the square. Two semi circles are drawn with $A D$ and $B C$ as diameters. Find the area of the shaded region.* $\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$
$\overline{* *}$ Answer is not given due to change in the present syllabus.
(b) The marks obtained by 30 students in a class assessment of 5 subjects is given below :

Marks	0	1	2	3	4	5
No. of Students	1	3	6	10	5	5

Calculate the mean, median and mode of the above distribution.
(c) In the figure given below, O is the centre of the circle and $S P$ is a tangent. If $\angle S R T=65^{\circ}$, find the value of x, y and z.

Question 4.
(a) Katrina opened a recurring deposit account with a Nationalised Bank for a period of 2 years. If the bank pays interest at the rate of 6% per annum and the monthly instalment is ₹ 1,000 , find the :
(i) interest earned in 2 years.
(ii) maturity value.
(b) Find the value of ' K ' for which $x=3$ is a solution of the quadratic equation,
$(K+2) x^{2}-K x+6=0$.
Thus, find the other root of the equation.
(c) Construct a regular hexagon of side 5 cm . Construct a circle circumscribing the hexagon. All traces of construction must be clearly shown.

SECTION—B (40 Marks)
 (Attempt any four questions from this Section)

Question 5.
(a) Use a graph paper for this question take $1 \mathrm{~cm}=1$ unit along both the X and Y axis :
(i) Plot the points $A(0,5), B(2,5), C(5,2), D(5,-2)$, $E(2,-5)$ and $F(0,-5)$.
(ii) Reflect the points B, C, D and E on the Y-axis and name them respectively as $B^{\prime}, C^{\prime}, D^{\prime}$ and E^{\prime}.
(iv) Name the figure formed by $B C D E E^{\prime} D^{\prime} C^{\prime} B^{\prime}$.
(v) Name a line of symmetry for the figure formed. .* [5]
(b) Virat opened a Savings Bank account in a bank on $16^{\text {th }}$ April, 2010. His pass book shows the following entries :**
(iii) Write the coordinates of $B^{\prime}, C^{\prime}, D^{\prime}$ and E^{\prime}.

Date	Particulars	Withdrawal (₹)	Deposit (₹)	Balance (₹)
April 16, 2010	By Cash	-	2500	2500
April 28 $8^{\text {th }}$	By Cheque	-	3000	5500
May 9	h	To Cheque	850	-
May 15	4650			
May 24	th	By Cash	To Cash	1000
1600	6250			
June 4 $^{\text {th }}$	To Cash	500	-	5250
June 30 $^{\text {th }}$	By Cheque	-	-	4750
July 3				

Calculate the interest Virat earned at the end of $31^{\text {st }}$ July, 2010 at 4\% per annum interest. What sum of money will he receive if he closes the account on $1^{\text {st }}$ August, 2010 ?
Question 6.
(a) If a, b, c are in continued proportion, prove that $(a+b+c)(a-b+c)=a^{2}+b^{2}+c^{2}$
(b) In the given figure $A B C$ is a triangle and $B C$ is parallel to the Y-axis. $A B$ and $A C$ intersects the y-axis at P and Q respectively.

(i) Write the coordinates of A.
(ii) Find the length of $A B$ and $A C$.**
(iii) Find the ratio in which Q divides $A C$.
(iv) Find the equation of the line $A C$.
[4]
(c) Calculate the mean of the following distribution:
[3]

Class In- terval	$0-10$	$10-$ 20	$20-$ 30	$30-$ 40	$40-$ 50	$50-$ 60
Frequency	8	5	12	35	24	16

Question 7.
(a) Two solid spheres of radii 2 cm and 4 cm are melted and recast into a cone of height 8 cm . Find the radius of the cone so formed.
** Answer is not given due to change in the present syllabus.
(b) Find ' a ' if the two polynomials $a x^{3}+3 x^{2}-9$ and $2 x^{3}+$ $4 x+a$, leaves the same remainder when divided by $x+$ 3.
(c) Prove that $\frac{\sin \theta}{1-\cot \theta}+\frac{\cos \theta}{1-\tan \theta}=\cos \theta+\sin \theta$

Question 8.
(a) $A B$ and $C D$ are two chords of a circle intersecting at P.
Prove that $A P \times P B=C P \times P D$

(b) A bag contains 5 white balls, 6 red balls and 9 green balls. A ball is drawn at random from the bag. Find the probability that the ball drawn is :
(i) a green ball
(ii) a white or red ball
(iii) is neither a green ball nor a white ball.
[3]
(c) Rohit invested ₹ 9,600 on ₹ 100 shares at ₹ 20 premium paying 8% dividend. Rohit sold the shares when the price rose to ₹ 160 . He invested the proceeds (excluding dividend) in 10% ₹ 50 shares at ₹ 40 . Find the :
(i) original number of shares.
(ii) sale proceeds.
(iii) new number of shares.
(iv) change in the two dividends.

Question 9.
(a) The horizontal distance between two towers is 120 m . The angle of elevation of the top and angle of depression of the bottom of the first tower as observed from the second tower is 30° and 24° respectively.

Find the height of the two towers. Give your answer correct to 3 significant figures.
(b) The weight of 50 workers is given below:

Weight in	$50-$ 60	$60-$ 70	$70-$ 80	$80-$ 90	$90-$ 100	$100-$ 110	$110-$ 120
No. of Workers	4	7	11	14	6	5	3

Draw an ogive of the given distribution using a graph sheet. Take $2 \mathrm{~cm}=10 \mathrm{~kg}$ on one axis and $2 \mathrm{~cm}=5$ workers along the other axis. Use a graph to estimate the following :
(i) the upper and lower quartiles.
(ii) if weight 95 kg and above is considered overweight find the number of workers who are overweight.

Question 10.
(a) A wholesaler buys a TV from the manufacturer for ₹ 25,000 . He marks the price of the TV 20% above his cost price and sells it to a retailer at a 10% discount on the marked price. If the rate of VAT is 8%, Find the :**
(i) marked price.
(ii) retailer's cost price inclusive of tax.
(iii) VAT paid by the wholesaler.
(b) If $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 4\end{array}\right] B=\left[\begin{array}{ll}0 & 2 \\ 5 & 3\end{array}\right]$ and $C=\left[\begin{array}{cc}1 & -5 \\ -4 & 6\end{array}\right]$

Find $A B-5 C$.
[3]
(c) $A B C$ is a right angled triangle with $\angle A B C=90^{\circ}$, D is any point on $A B$ and $D E$ is perpendicular to $A C$. Prove that:

(i) $\triangle A D E \sim \triangle A C B$.
(ii) If $A C=13 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $A E=4 \mathrm{~cm}$. Find $D E$ and $A D$.
(iii) Find area of $\triangle A D E$: area of quadrilateral $B C E D$.

Question 11.
(a) Sum of two natural numbers is 8 and the difference of their reciprocal is $\frac{2}{15}$. Find the numbers.
(b) Given $\frac{x^{3}+12 x}{6 x^{2}+8}=\frac{y^{3}+27 y}{9 y^{2}+27}$. Using componendo and dividendo find $x: y$.
(c) Construct a triangle $A B C$ with $A B=5.5 \mathrm{~cm}$, $A C=6 \mathrm{~cm}$ and $\angle B A C=105^{\circ}$. Hence :
(i) Construct the locus of points equidistant from $B A$ and $B C$.
(ii) Construct the locus of points equidistant from B and C.
(iii) Mark the point which satisfies the above two loci as P. Measure and write the length of PC.

ANSWERS

SECTION—A

Solution 1.
(b) Given, $13 x-5<15 x+4<7 x+12$
$\Rightarrow \quad 13 x-5<15 x+4$ and $15 x+4<7 x+12$
$\Rightarrow 13 x-15 x<4+5$ and $15 x-7 x<12-4$
$\Rightarrow \quad-2 x<9 \quad$ and $\quad 8 x<8$
$\Rightarrow \quad-x<\frac{9}{2} \quad$ and $\quad x<1$
$\Rightarrow \quad x>-4.5$
$\therefore \quad$ Solution set $=\{x:-4 \cdot 5<x<1$ and $x \in \mathrm{R}\}$ Required number line,

[^2]Solution 2.
(a) Here, $\mathrm{A}=\left[\begin{array}{ll}3 & x \\ 0 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}9 & 16 \\ 0 & -y\end{array}\right]$

$$
\begin{aligned}
\mathrm{A}^{2} & =\mathrm{A} \cdot \mathrm{~A}=\left[\begin{array}{ll}
3 & x \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & x \\
0 & 1
\end{array}\right]=\left[\begin{array}{rr}
9+0 & 3 x+x \\
0+0 & 0+1
\end{array}\right] \\
& =\left[\begin{array}{ll}
9 & 4 x \\
0 & 1
\end{array}\right]
\end{aligned}
$$

According to the given condition,

$$
\begin{aligned}
\mathrm{A}^{2} & =\mathrm{B} \\
{\left[\begin{array}{cc}
9 & 4 x \\
0 & 1
\end{array}\right] } & =\left[\begin{array}{cc}
9 & 16 \\
0 & -y
\end{array}\right]
\end{aligned}
$$

On comparing, we get,

$$
\left.\begin{array}{rlrl}
& & 4 x & =16 \text { and }-y
\end{array}\right)=10 \text { Ans. }
$$

(c) (i) Let the coordinates of the fourth vertex of a parallelogram be $\mathrm{D}(x, y)$.
Since, diagonals of a parallelogram bisects each other

\therefore Mid point of $\mathrm{AC}=$ Mid point of BD
$\Rightarrow\left(\frac{3+3}{2}, \frac{6+2}{2}\right)=\left(\frac{5+x}{2}, \frac{10+y}{2}\right)$
$\Rightarrow \quad(3,4)=\left(\frac{5+x}{2}, \frac{10+y}{2}\right)$
$\Rightarrow \quad \frac{5+x}{2}=3$ and $\frac{10+y}{2}=4$
$\Rightarrow \quad 5+x=6$ and $10+y=8$
$\Rightarrow \quad x=1$ and $y=-2$
\therefore The coordinates of the fourth vertex D is
$(1,-2)$.
Ans.
(iii) Here, $\mathrm{A}=(3,6)$ and $\mathrm{B}(5,10)$

$$
\begin{aligned}
& \text { i.e., } \\
& x_{1}=3, x_{2}=5 \\
& y_{1}=6, y_{2}=10 \text {, } \\
& \therefore \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{10-6}{5-3}=2
\end{aligned}
$$

\therefore Equation of side AB of the parallelogram ABCD is

$$
\begin{aligned}
& & y-y_{1} & =m\left(x-x_{1}\right) \\
\Rightarrow & & y-6 & =2(x-3) \\
\Rightarrow & & y-6 & =2 x-6 \\
\Rightarrow & & y & =2 x \text { or } 2 x-y=0
\end{aligned}
$$

Ans.
Solution 3.
(b)

Marks (x)	No. of stu- dents (\boldsymbol{f})	$(\boldsymbol{f} \cdot \boldsymbol{x})$	Cumula- tive fre- quency $($ c.f. $)$
0	1	0	1
1	3	3	4
2	6	12	10
3	10	30	20
4	5	20	25
5	5	25	30
	$\sum f=30$	$\sum f x=90$	

$\therefore \quad$ Mean $=\frac{\Sigma f x}{\Sigma f}=\frac{90}{30}=3$
\therefore Mean marks is 3 .
Here, $n=30$, which is even

$$
\begin{aligned}
\therefore \quad \text { Median } & =\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { term }+\left(\frac{n+1}{2}\right)^{\text {th }} \text { term }}{2} \\
& =\frac{\left(\frac{30}{2}\right)^{\text {th }} \text { term }+\left(\frac{30}{2}+1\right)^{\text {th }} \text { term }}{2} \\
& =\frac{15^{\text {th }} \text { term }+16^{\text {th }} \text { term }}{2} \\
& =\frac{3+3}{2}
\end{aligned}
$$

\therefore Median marks $=3$
Since, the number 3 has maximum frequency 10.
$\therefore \quad$ Mode $=3$
\therefore Mean $=3$, Median $=3$ and Mode $=3$. Ans.
(c) Given, $\angle \mathrm{SRT}=65^{\circ}$ and SP is a tangent
$\therefore \quad \angle \mathrm{TSR}=90^{\circ}$
(angle between the radius and tangent)
In \triangle STR,

$$
\angle \mathrm{TSR}+\angle \mathrm{SRT}+\angle \mathrm{STR}=180^{\circ}
$$

(Angle sum property of triangle)
$\therefore \quad \angle \mathrm{STR}=180^{\circ}-\left(65^{\circ}+90^{\circ}\right)$
$x=180^{\circ}-155^{\circ}$
$x=25^{\circ}$

$\angle y=2 \angle x$
(Angle subtended at the centre is double that of the angle subtended by the arc at same centre)

$$
\therefore \quad y=2 \times 25^{\circ}=50^{\circ}
$$

In $\triangle \mathrm{SPO}$,

$$
\begin{aligned}
& \quad \angle \mathrm{SOP}+\angle \mathrm{OSP}+\angle \mathrm{SPO}=180^{\circ} \\
& \\
& \quad \begin{aligned}
& \text { (Angle sum property of triangle) } \\
& \therefore \mathrm{SPO}=180^{\circ}-\left(90^{\circ}+50^{\circ}\right) \\
& z=40^{\circ}
\end{aligned} \\
& \text { Hence, } x=25^{\circ}, y=50^{\circ} \text { and } z=40^{\circ} \quad \text { Ans. }
\end{aligned}
$$

Solution 4.
(a) Since, money deposited $=₹ 1,000$ per month i.e., $\mathrm{P}=₹ 1,000$
and number of months $=2 \times 12=24$ i.e., $n=24$ and $r=6 \%$
(i) Interest earned in 2 years

$$
\begin{aligned}
& =\mathrm{P} \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100} \\
& =1,000 \times \frac{24(24+1)}{2 \times 12} \times \frac{6}{100} \\
& =₹ 1,500 . \quad \text { Ans. }
\end{aligned}
$$

(ii) Maturity value $=$ Sum deposited + Interest

$$
\begin{aligned}
& =₹(1,000 \times 24)+₹ 1,500 \\
& =₹ 25,500
\end{aligned}
$$

Ans.
(b) Since $x=3$ is the solution of the given equation
$(\mathrm{K}+2) x^{2}-\mathrm{K} x+6=0$
we get,

$$
\begin{aligned}
& & (\mathrm{K}+2)(3)^{2}-\mathrm{K}(3)+6 & =0 \\
\Rightarrow & & 9 \mathrm{~K}+18-3 \mathrm{~K}+6 & =0 \\
\Rightarrow & & 6 \mathrm{~K} & =-24 \\
\Rightarrow & & \mathrm{~K} & =-4
\end{aligned}
$$

Now, putting $K=-4$ in equation (i), we get
$\Rightarrow \quad(-4+2) x^{2}-(-4) x+6=0$
$\Rightarrow \quad-2 x^{2}+4 x+6=0$
$\Rightarrow \quad x^{2}-2 x-3=0$
$\Rightarrow \quad x^{2}-3 x+x-3=0$
$\Rightarrow \quad x(x-3)+1(x-3)=0$
$\Rightarrow \quad(x-3)(x+1)=0$
$\Rightarrow \quad x=3$ or $x=-1$
\therefore The other root is -1 .
Ans.
(c) Steps of Construction :

1. Construct a regular hexagon ABCDEF with each side 5 cm .
2. Draw the perpendicular bisectors of sides $A B$ and AF which intersect each other at point O.
3. With O as centre and OA as radius, draw a circle which will pass through all the vertices of the regular hexagon.

SECTION—B

Solution 5.

(a) (i) Plot the given points on the graph as shown below:

(ii) and (iii)

Reflection of $B(2,5)$ on the Y-axis $=(-2,5)$ i.e., B^{\prime} Reflection of $C(5,2)$ on the Y-axis $=(-5,2)$ i.e., C^{\prime} Reflection of $\mathrm{D}(5,-2)$ on the Y-axis $=(-5,-2)$ i.e., D^{\prime} Reflection of $\mathrm{E}(2,-5)$ on the Y-axis $=(-2,-5)$ i.e., E'
(iv) Figure formed by $B C D E E^{\prime} D^{\prime} C^{\prime} B^{\prime}$ is regular Octagon.
Solution 6.
(a) Given, a, b, c are in continued proportion.

$$
\begin{aligned}
& \therefore \quad a: b=b: c \\
& \Rightarrow \quad \frac{a}{b}=\frac{b}{c} \\
& \Rightarrow \quad b^{2}=a c \\
& \text { L.H.S. }=(a+b+c)(a-b+c) \\
& =a^{2}-a b+a c+a b-b^{2}+b c+a c-b c+c^{2} \\
& =a^{2}+2 a c-b^{2}+c^{2} \\
& =a^{2}+2 b^{2}-b^{2}+c^{2} \\
& =a^{2}+b^{2}+c^{2}=\text { R.H.S. Hence Proved. }
\end{aligned}
$$

(b) (i) Coordinates of A are $(4,0)$
(iii) Let the required ratio be $K: 1$ and the point Q be $(0, y)$
Here, $x_{1}=4, y_{1}=0, x_{2}=-2, y_{2}=-4$
We have, $\quad x=\frac{\mathrm{K} x_{2}+x_{1}}{\mathrm{~K}+1}$
$\Rightarrow \quad 0=\frac{\mathrm{K}(-2)+4}{\mathrm{~K}+1}$
$\Rightarrow \quad 0=-2 \mathrm{~K}+4$
$\Rightarrow \quad 2 \mathrm{~K}=4$
$\Rightarrow \quad \mathrm{K}=2$
$\Rightarrow \quad \mathrm{K}: 1=2: 1$
Ans.
(iv) Equation of the line AC,
where,

$$
\begin{aligned}
& x_{1}=4, y_{1}=0 \\
& x_{2}=-2, y_{2}=-4
\end{aligned}
$$

ICSE Mathematics-2015

$$
\begin{array}{rlrl}
& & y-y_{1} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \\
\Rightarrow & y-0 & =\frac{-4-0}{-2-4}(x-4) \\
\Rightarrow & y & =\frac{2}{3}(x-4) \\
\Rightarrow & 3 y & =2 x-8 \\
\Rightarrow & 2 x-3 y & =8
\end{array}
$$

(c)

Class In- terval	Frequency (f)	Mean value (x)	$f x$
$0-10$	8	5	40
$10-20$	5	15	75
$20-30$	12	25	300
$30-40$	35	35	1225
$40-50$	24	45	1080
$50-60$	16	55	880
	$\sum f=100$		$\sum f x=$
			3600

$$
\therefore \quad \text { Mean }=\frac{\Sigma f x}{\Sigma f}=\frac{3600}{100}=36
$$

The mean of the given distribution is 36 .
Solution 7.
(a) Volume of solid sphere of radius 2 cm

$$
=\frac{4}{3} \pi(2)^{3}=\frac{32}{3} \pi \mathrm{~cm}^{3}
$$

Volume of solid sphere of radius 4 cm

$$
\begin{aligned}
& =\frac{4}{3} \pi(4)^{3} \\
& =\frac{256}{3} \pi \mathrm{~cm}^{3} \\
\text { Total Volume } & =\left(\frac{32}{3} \pi+\frac{256}{3} \pi\right) \mathrm{cm}^{3} \\
& =96 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

\because Height of cone $=8 \mathrm{~cm}$
\therefore Volume of cone formed

$$
\begin{array}{rlrl}
& =\frac{1}{3} \pi r^{2} h \\
\Rightarrow & 96 \pi & =\frac{1}{3} \pi r^{2} \times 8 \\
\Rightarrow & r^{2} & =\frac{96 \times 3}{8} \\
\Rightarrow & r & =\sqrt{36} \\
\Rightarrow & & r & =6 \mathrm{~cm}
\end{array}
$$

Hence, the radius of the cone formed is 6 cm .
Ans.
Ans.
$=\frac{4}{3} \pi(2)^{3}=\frac{32}{3} \pi \mathrm{~cm}^{3}$
Ans.
(b) Let $f(x)=a x^{3}+3 x^{2}-9$ and $g(x)=2 x^{3}+4 x+a$. Since, the given polynomials leave the same remainder when divided by $x+3$, so put $x+3=0$ $\Rightarrow x=-3$ in $f(x)$ and $g(x)$.
By Remainder theorem,

$$
\left.\left.\begin{array}{rlrl}
& & f(-3) & =g(-3) \\
& & & a(-3)^{3}+3(-3)^{2}-9
\end{array}\right)=2(-3)^{3}+4(-3)+a\right)
$$

$$
\Rightarrow \quad a=3 . \quad \text { Ans. }
$$

(c) L.H.S. $=\frac{\sin \theta}{1-\cot \theta}+\frac{\cos \theta}{1-\tan \theta}$

$$
=\frac{\sin \theta}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\cos \theta}{1-\frac{\sin \theta}{\cos \theta}}
$$

$$
\left(\because \tan \theta=\frac{\sin \theta}{\cos \theta}, \cot \theta=\frac{\cos \theta}{\sin \theta}\right)
$$

$$
\Rightarrow \quad=\frac{\sin \theta}{\frac{\sin \theta-\cos \theta}{\sin \theta}}+\frac{\cos \theta}{\frac{\cos \theta-\sin \theta}{\cos \theta}}
$$

$$
=\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta}+\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta}
$$

$$
=\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta}-\frac{\cos ^{2} \theta}{\sin \theta-\cos \theta}
$$

$$
=\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin \theta-\cos \theta}
$$

$$
\left[\because a^{2}-b^{2}=(a-b)(a+b)\right]
$$

$$
=\frac{(\sin \theta+\cos \theta)(\sin \theta-\cos \theta)}{(\sin \theta-\cos \theta)}
$$

$$
=(\cos \theta+\sin \theta)=\text { R.H.S. }
$$

Hence Proved.
Solution 8.
(a) Given : Chord AB and CD of a circle intersect each other at point P inside the circle.

To prove : $\mathrm{AP} \times \mathrm{PB}=\mathrm{CP} \times \mathrm{PD}$
Construction: Join AC and BD
Proof: In $\Delta \mathrm{APC}$ and $\Delta \mathrm{BPD}$

$$
\angle \mathrm{A}=\angle \mathrm{D}
$$

(Angles of same segment) $\angle \mathrm{C}=\angle \mathrm{B}$
(Angles of same segment)
$\begin{array}{lcc}\therefore & \Delta \mathrm{APC} \sim \Delta \mathrm{DPB} & \text { (By AA axiom) } \\ \Rightarrow & \frac{\mathrm{AP}}{\mathrm{PD}}=\frac{\mathrm{CP}}{\mathrm{PB}} \\ & & \text { (corresponding sides of similar triangles) }\end{array}$
$\Rightarrow \quad \mathrm{AP} \times \mathrm{PB}=\mathrm{CP} \times \mathrm{PD}$. Hence Proved.
(b) Given,

$$
\begin{aligned}
\text { Number of white balls } & =5 \\
\text { Number of red balls } & =6
\end{aligned}
$$

Number of green balls $=9$
$\therefore \quad$ Total number of outcomes $=(5+6+9)$

$$
=20
$$

(i) $\quad \mathrm{P}($ getting a green ball $)=\frac{9}{20} \quad$ Ans.
(ii) $\mathrm{P}($ getting a white or red ball $)=\frac{5}{20}+\frac{6}{20}$

$$
\begin{gathered}
=\frac{11}{20} \\
{[\because \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})]}
\end{gathered}
$$

Ans.
(iii) P (getting neither a green ball nor a white ball $)=P\left(\right.$ getting a red ball) $\frac{6}{20}=\frac{3}{10} \quad$ Ans.
(c) Given, sum invested $=₹ 9,600$
N.V. of each share $=₹ 100$
M.V. of each share $=₹(100+20)=₹ 120$
rate of dividend $=8 \%$
(i) Number of shares bought $=\frac{9,600}{120}=80$
(ii) Selling price of one share $=₹ 160$

Selling price of 80 shares $=₹ 80 \times 160$

$$
=₹ 12,800
$$

Hence, Rohit's sales produced

$$
=₹ 12,800
$$

Ans.
(iii) Market value of new share $=₹ 40$

> Investment = ₹ 12,800

New number of shares bought $=\frac{12,800}{40}$

$$
=320
$$

Ans.
(iv) Dividend from original shares
$=$ Number of shares \times Rate of dividend \times Face value of one share

$$
=₹ 80 \times \frac{8}{100} \times 100
$$

$$
=₹ 640
$$

Annual dividend from new shares
$=$ Number of shares \times Rate of dividend \times Face value of one share

$$
\begin{aligned}
& =₹ 320 \times \frac{10}{100} \times 50 \\
& =₹ 1,600
\end{aligned}
$$

Change in two dividend

$$
\begin{aligned}
& =₹(1,600-640) \\
& =₹ 960
\end{aligned}
$$

Dividend increase = ₹ 960.
Ans.

Solution 9.

(a) Let, AB and CD be towers and $\mathrm{BD}=120 \mathrm{~m}$. In right angled $\Delta \mathrm{BDC}$

$$
\tan 24^{\circ}=\frac{C D}{B D}
$$

$$
0 \cdot 4452=\frac{C D}{120}
$$

(using trigonometric table)

$$
C D=53.424 \mathrm{~m}
$$

In right angled $\Delta \mathrm{AEC}$

$$
\tan 30^{\circ}=\frac{\mathrm{AE}}{\mathrm{EC}}=\frac{\mathrm{AE}}{\mathrm{BD}} \quad(\because \mathrm{EC}=\mathrm{BD})
$$

$$
\begin{aligned}
\frac{1}{\sqrt{3}} & =\frac{\mathrm{AE}}{120} \\
\mathrm{AE} & =\frac{120}{\sqrt{3}} \\
\mathrm{AE} & =69 \cdot 284 \mathrm{~m} \\
\therefore \quad \mathrm{AB} & =\mathrm{AE}+\mathrm{EB} \quad(\because \mathrm{~EB}=\mathrm{CD}) \\
& =69 \cdot 284+53 \cdot 424 \\
& =122 \cdot 708 \mathrm{~m}
\end{aligned}
$$

Hence, the height of the towers are 53.424 m and 122.708 m .

Ans.
(b)

Weight (in kg)	No. of workers $(\boldsymbol{f}$)	Cumulative frequency (c.f.)
$50-60$	4	4
$60-70$	7	11
$70-80$	11	22
$80-90$	14	36
$90-100$	6	42
$100-110$	5	47
$110-120$	3	50
	$\mathrm{~N}=\sum f=50$	

Note: On Y-axis instead of $2 \mathrm{~cm}=5$ workers, we have taken $1 \mathrm{~cm}=5$ workers and on X-axis instead of $2 \mathrm{~cm}=10 \mathrm{~kg}$, we have taken 1 cm $=10 \mathrm{~kg}$.
From graph,
(i) Upper quartile range

$$
\begin{aligned}
\left(Q_{3}\right) & =\left(\frac{3 \mathrm{~N}}{4}\right)^{\text {th }} \text { term } \\
& =\left(\frac{3 \times 50}{4}\right)^{\text {th }} \text { term } \\
& =37.5^{\text {th }} \text { term }=92.5 \mathrm{~kg}
\end{aligned}
$$

Lower quartile range

$$
\begin{aligned}
\left(\mathrm{Q}_{1}\right) & =\left(\frac{\mathrm{N}}{4}\right)^{\text {th }} \text { term } \\
& =\left(\frac{50}{4}\right)^{\text {th }} \text { term } \\
& =12 \cdot 5^{\text {th }} \text { term } \\
& =71.5 \mathrm{~kg} .
\end{aligned}
$$

Ans.
(ii) From the graph, Number of workers who are under-weight i.e., less than 95 are 39.
No. of workers who are over-weight are $(50-39)=11$.

Ans.

Solution 10.
(b) Given,
and

$$
\mathrm{A}=\left[\begin{array}{ll}
3 & 7 \\
2 & 4
\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}
0 & 2 \\
5 & 3
\end{array}\right]
$$

$$
C=\left[\begin{array}{rr}
1 & -5 \\
-4 & 6
\end{array}\right]
$$

$$
\therefore \quad \mathrm{AB}=\left[\begin{array}{ll}
3 & 7 \\
2 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 2 \\
5 & 3
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
0+35 & 6+21 \\
0+20 & 4+12
\end{array}\right]=\left[\begin{array}{ll}
35 & 27 \\
20 & 16
\end{array}\right]
$$

and

$$
5 C=\left[\begin{array}{cc}
5 & -25 \\
-20 & 30
\end{array}\right]
$$

$$
\therefore \quad \mathrm{AB}-5 \mathrm{C}=\left[\begin{array}{rr}
35 & 27 \\
20 & 16
\end{array}\right]-\left[\begin{array}{rr}
5 & -25 \\
-20 & 30
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
35-5 & 27+25 \\
20+20 & 16-30
\end{array}\right]
$$

$$
=\left[\begin{array}{rr}
30 & 52 \\
40 & -14
\end{array}\right]
$$

Ans.
(c) (i) Given : $\triangle \mathrm{ABC}$, right angled at B and DE perpendicular to AC .
To prove : $\triangle \mathrm{ADE} \sim \Delta \mathrm{ACB}$.
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ACB}$,

$$
\begin{aligned}
\angle \mathrm{ABC} & =\angle \mathrm{AED}=90^{\circ} \\
\angle \mathrm{A} & =\angle \mathrm{A} \quad(\text { Common })
\end{aligned}
$$

\therefore By AA axiom, $\Delta \mathrm{ADE} \sim \Delta \mathrm{ACB}$.
(ii) Given: $\mathrm{AC}=13 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{AE}=4 \mathrm{~cm}$

In right angled triangle ABC

$$
\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}
$$

(by applying Pythagoras Theorem)

$$
\begin{aligned}
\mathrm{AB}^{2}+(5)^{2} & =(13)^{2} \\
\mathrm{AB} & =\sqrt{169-25} \\
& =12 \mathrm{~cm}
\end{aligned}
$$

Since, the $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ACB}$ are similar, then their corresponding sides will be proportional.

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{AC}}{\mathrm{AD}}=\frac{\mathrm{AB}}{\mathrm{AE}} \Rightarrow \frac{13}{\mathrm{AD}}=\frac{12}{4} \\
\Rightarrow & \mathrm{AD}=\frac{13 \times 4}{12}=4.33 \mathrm{~cm} \\
\text { and } & \frac{\mathrm{BC}}{\mathrm{DE}}=\frac{\mathrm{AB}}{\mathrm{AE}} \Rightarrow \frac{5}{\mathrm{DE}}=\frac{12}{4} \\
& \mathrm{DE}=\frac{5 \times 4}{12}=1.67 \mathrm{~cm} . \quad \text { Ans. }
\end{array}
$$

(iii) In similar triangles, area of triangles are proportional to the square to the corresponding sides.

$$
\begin{aligned}
& \frac{\operatorname{Ar} \text { of }(\triangle \mathrm{ABC})}{\mathrm{Ar} \text { of }(\triangle \mathrm{ADE})}=\frac{\mathrm{AB}^{2}}{\mathrm{AE}^{2}}=\frac{12^{2}}{4^{2}}=\frac{144}{16}=\frac{9}{1} \\
\Rightarrow & \frac{\operatorname{Ar} \text { of }(\triangle \mathrm{ADE})+\operatorname{Ar}(\text { quadrilateral BCED })}{\operatorname{Ar~of~(~} \triangle \mathrm{ADE})}=9 \\
\Rightarrow \quad & 1+\frac{\text { Ar of (quadrilateral BCED) }}{\text { Ar of }(\triangle \mathrm{ADE})}=9 \\
\Rightarrow \quad & \frac{\text { Ar of (quadrilateral BCED) }}{\text { Ar of }(\triangle \mathrm{ADE})}=8 \\
\Rightarrow \quad & \frac{\text { Ar of }(\triangle \mathrm{ADE})}{\text { Ar of (quadrilateral BCED) }}=\frac{1}{8} \quad \text { Ans. }
\end{aligned}
$$

Solution 11.

(a) Let, the two natural numbers be x and $8-x$.

$$
\text { Given, } \begin{aligned}
\frac{1}{x}-\frac{1}{8-x} & =\frac{2}{15} \\
\Rightarrow \quad \frac{8-x-x}{x(8-x)} & =\frac{2}{15} \\
(8-2 x) 15 & =16 x-2 x^{2} \\
120-30 x & =16 x-2 x^{2} \\
2 x^{2}-46 x+120 & =0 \\
x^{2}-23 x+60 & =0
\end{aligned}
$$

On splitting the middle term, we get

$$
\begin{aligned}
x^{2}-20 x-3 x+60 & =0 \\
x(x-20)-3(x-20) & =0 \\
(x-3)(x-20) & =0 \\
x & =3 \text { or } x=20 \text { (neglect it) }
\end{aligned}
$$

$(\because$ Sum of two natural numbers is 8)
Thus, one number $=3$ and other number

$$
=8-3=5
$$

\therefore The natural numbers are 3 and 5 .
Ans.
(b) Given, $\quad \frac{x^{3}+12 x}{6 x^{2}+8}=\frac{y^{3}+27 y}{9 y^{2}+27}$

Applying componendo and dividendo, we get

$$
\begin{aligned}
\frac{x^{3}+12 x+6 x^{2}+8}{x^{3}+12 x-6 x^{2}-8} & =\frac{y^{3}+27 y+9 y^{2}+27}{y^{3}+27 y-9 y^{2}-27} \\
{\left[\because(a+b)^{3}\right.} & =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
(a-b)^{3} & \left.=a^{3}+3 a b^{2}-3 a^{2} b-b^{3}\right] \\
\Rightarrow \quad \frac{(x+2)^{3}}{(x-2)^{3}} & =\frac{(y+3)^{3}}{(y-3)^{3}}
\end{aligned}
$$

Taking cube root on both the sides

$$
\Rightarrow \quad \frac{x+2}{x-2}=\frac{y+3}{y-3}
$$

Again using componendo and dividendo, we get

$$
\begin{aligned}
\left.\begin{array}{rl}
\frac{x+2+x-2}{x+2-x+2} & =\frac{y+3+y-3}{y+3-y+3} \\
\frac{2 x}{4} & =\frac{2 y}{6} \\
\frac{x}{y} & =\frac{2}{3} \\
\text { Hence, } \quad x: y & =2: 3
\end{array} .=\begin{array}{l}
\end{array}\right)
\end{aligned}
$$

Ans.
(c) Steps of construction:

1. Draw a line $A B=5.5 \mathrm{~cm}$.
2. Now, from point A draw $\angle \mathrm{XAB}=105^{\circ}$ using compass.
3. Taking A as centre and 6 cm as radius draw arc on AX. Mark this point as C.
4. Join BC.
5. Draw bisector of $\angle \mathrm{ABC}$ and perpendicular bisector of $B C$, both intersecting at P. P is the required point.

Reason :

Since,
(i) P is on bisector of $\angle \mathrm{ABC}$, therefore, P is equidistant from BA and BC .

Ans.
(ii) P is on perpendicular bisector of BC , therefore, P is equidistant from B and C.

Ans.
(iii) Length of $P C$ is 4.8 cm .

Ans.

Questions

SECTION—A (40 Marks)
(Attempt all questions from this Section)

Calculate the area of the remaining piece of the rectangle.** \quad Take $\pi=\frac{22}{7}$)
(a) Ranbir borrows ₹ 20,000 at 12% per annum compound interest. If he repays $₹ 8,400$ at the end of the first year and ₹ 9,680 at the end of the second year, find the amount of loan outstanding at the beginning of the third year.**
(b) Find the values of x, which satisfy the inequation $-2 \frac{5}{6}<\frac{1}{2}-\frac{2 x}{3} \leq 2, x \in W$. Show or represent the solution set on the number line, where W is the set of whole numbers.
(c) A die has 6 faces marked by the given numbers as shown below :

| 1 | 2 | 3 -1 -2 -3 | -2 |
| :--- | :--- | :--- | :--- | :--- | :--- |

The die is thrown once. What is the probability of getting
(i) a positive integer.
(ii) an integer greater than -3 .
(iii) the smallest integer.

Question 2.
(a) Find x, y if $\left[\begin{array}{rr}-2 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{r}-1 \\ 2 x\end{array}\right]+\left[\begin{array}{r}-2 \\ 1\end{array}\right]=2\left[\begin{array}{l}y \\ 3\end{array}\right]$.
(b) Shahrukh opened a Recurring Deposit Account in a bank and deposited ₹ 800 per month for $1 \frac{1}{2}$ years. If he received ₹ 15,084 at the time of maturity, find the rate of interest per annum.
(c) Calculate the ratio in which the line joining $A(-4,2)$ and $B(3,6)$ is divided by point $P(x, 3)$. Also, find (i) x
(ii) Length of $A P$.**

Question 3.
(a) Without using trigonometric tables, evaluate.**
$\sin ^{2} 34^{\circ}+\sin ^{2} 56^{\circ}+2 \tan 18^{\circ} \tan 72^{\circ}-\cot ^{2} 30^{\circ}$
(b) Using the Remainder and Factor Theorem, factorise the following polynomial:

$$
\begin{equation*}
x^{3}+10 x^{2}-37 x+26 \tag{3}
\end{equation*}
$$

(c) In the figure given below, $A B C D$ is a rectangle. $A B=14 \mathrm{~cm}, B C=7 \mathrm{~cm}$. From the rectangle, a quarter circle BFEC and a semicircle DGE are removed.
$\overline{* *}$ Answer is not given due to change in the present syllabus.

Question 4.
(a) The numbers $6,8,10,12,13$, and x are arranged in an ascending order. If the mean of the observations is equal to the median, find the value of x.
(b) In the given figure, $\angle D B C=58^{\circ}, B D$ is diameter of the circle. Calculate :
(i) $\angle B D C$
(ii) $\angle B E C$
(iii) $\angle B A C$
[3]

(c) Use graph paper to answer the following questions. (Take $2 \mathrm{~cm}=1$ unit on both axis).
(i) Plot the points $A(-4,2)$ and $B(2,4)$.
(ii) A^{\prime} is the image of A when reflected in the Y -axis. Plot it on the graph paper and write the coordinates of A^{\prime}.
(iii) B^{\prime} is the image of B when reflected in the line $A A^{\prime}$. Write the coordinates of B^{\prime}.
(iv) Write the geometric name of the figure $A B A^{\prime} B^{\prime}$.
(v) Name a line of symmetry of the figure formed. ${ }^{* *}$ [4]

SECTION—B (40 Marks)

(Attempt any four questions from this Section)
Question 5.
(a) A shopkeeper bought a washing machine at a discount of 20% from a wholesaler, the printed price of the washing machine being ₹ 18,000 . The shopkeeper sells it to a consumer at a discount of 10% on the printed price. If the rate of sales tax is 8%, find:
(i) the VAT paid by the shopkeeper.
(ii) the total amount that the consumer pays for the washing machine.**
[3]
(b) If $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}=\frac{17}{8}$, using the properties of proportion find the value of:
(i) $x: y$.
(ii) $\frac{x^{3}+y^{3}}{x^{3}-y^{3}}$.
[3]
$C D=7.8 \mathrm{~cm}, P D=5 \mathrm{~cm}, P B=4 \mathrm{~cm}$. Find:
(i) $A B$.
(ii) The length of tangent PT.
[3]

(c) Let $A=\left[\begin{array}{rr}2 & 1 \\ 0 & -2\end{array}\right], B=\left[\begin{array}{rr}4 & 1 \\ -3 & -2\end{array}\right]$ and $C=\left[\begin{array}{ll}-3 & 2 \\ -1 & 4\end{array}\right]$ Find $A^{2}+A C-5 B$.
Question 8.
(a) The compound interest, calculated yearly, on a certain sum of money for the second year is ₹ 1320 and for the third year is ₹ 1452 . Calculate the rate of interest and the original sum of money.**
(b) Construct a $\triangle A B C$ with $B C=6.5 \mathrm{~cm}, A B=5.5 \mathrm{~cm}$, $A C=5 \mathrm{~cm}$. Construct the incircle of the triangle. Measure and record the radius of the incircle. [3]
(c) The daily pocket expenses of 200 students in a school are given below : (Use a graph paper for this question.)

Pocket expenses (in ₹)	Number of students (frequency)
$0-5$	10
$5-10$	14
$10-15$	28
$15-20$	42
$20-25$	50
$25-30$	30
$30-35$	14
$35-40$	12

Draw a histogram representing the above distribution and estimate the mode from the graph.

[^3]Question 9.
(a) If $(x-9):(3 x+6)$ is the duplicate ratio of $4: 9$, find the value of x using properties of proportion.
(b) Solve for x using the quadratic formula. Write your answer correct to two significant figures.

$$
\begin{equation*}
(x-1)^{2}-3 x+4=0 \tag{3}
\end{equation*}
$$

(c) A page from the savings bank account of Priyanka is given below:
(b) In the figure given below, diameter $A B$ and chord $C D$ of a circle meet at P. PT is a tangent to the circle at T.
[3] the equation of the line.
(b) Salman invests a sum of money in ₹ 50 shares, paying 15% dividend quoted at 20% premium. If his annual dividend is ₹ 600 , calculate :
(i) the number of shares he bought.
(ii) his total investment.
(iii) the rate of return on his investment.
[3]
(c) The surface area of a solid metallic sphere is $2464 \mathrm{~cm}^{2}$. It is melted and recast into solid right circular cones of radius 3.5 cm and height 7 cm . Calculate :
(i) the radius of the sphere.
(ii) the number of cones formed. (Take $\pi=22 / 7$)

Question 7.
(a) Calculate the mean of the distribution given below using the short cut method.

Marks	$11-$	$21-$	$31-$	$41-$	$51-$	$61-$	$71-$
	20	30	40	50	60	70	80
No. of students	2	6	10	12	9	7	4

Date	Particulars	Amount withdrawn (₹)	Amount deposited (₹)	Balance (₹)
$3 / 4 / 2006$	B/F			$4000 \cdot 00$
$5 / 4 / 2006$	By Cash		$2000 \cdot 00$	$6000 \cdot 00$

[^4]ICSE Mathematics-2014

$18 / 4 / 2006$	By Cheque		$6000 \cdot 00$	$12000 \cdot 00$
$25 / 5 / 2006$	To Cheque	$5000 \cdot 00$		$7000 \cdot 00$
$30 / 5 / 2006$	By Cash		$3000 \cdot 00$	$10000 \cdot 00$
$20 / 7 / 2006$	By Self	$4000 \cdot 00$		$6000 \cdot 00$
$10 / 9 / 2006$	By Cash		$2000 \cdot 00$	$8000 \cdot 00$
$19 / 9 / 2006$	To Cheque	$1000 \cdot 00$		$7000 \cdot 00$

If the interest earned by Priyanka for the period ending September, 2006 is ₹ 175, find the rate of interes. ${ }^{* *}$ [4] Question 10.
(a) A two digit positive number is such that the product
of its digits is 6 . If 9 is added to the number, the digits interchange their places. Find the number.
(b) The marks obtained by 100 students in a Mathematics test are given below :

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
No. of Students	3	7	12	17	23	14	9	6	5	4

Draw an ogive for the given distribution on a graph sheet.
(Use a scale of $2 \mathrm{~cm}=10$ units on both axis).
Use the ogive to estimate the :
(i) median.
(ii) lower quartile.
(iii) number of students who obtained more than 85% marks in the test.
(iv) number of students who did not pass in the test if the pass percentage was 35 .
[6]
Question 11.
(a) In the figure given below, O is the centre of the circle. $A B$ and $C D$ are two chords of the circle. $O M$ is perpendicular to $A B$ and $O N$ is perpendicular to $C D$. $A B=24 \mathrm{~cm}, O M=5 \mathrm{~cm}, O N=12 \mathrm{~cm}$. Find the :*
(i) radius of the circle.
(ii) length of chord $C D$.
[3]

(b) Prove the identity
$(\sin \theta+\cos \theta)(\tan \theta+\cot \theta)=\sec \theta+\operatorname{cosec} \theta$.
(c) An aeroplane at an altitude of 250 m observes the angle of depression of two boats on the opposite banks of a river to be 45° and 60° respectively. Find the width of the river. Write the answer correct to the nearest whole number.

ANSWERS

SECTION—A

Solution 1.
(b) $\quad-2 \frac{5}{6}<\frac{1}{2}-\frac{2 x}{3} \leq 2$

Taking,

$$
-2 \frac{5}{6}<\frac{1}{2}-\frac{2 x}{3}
$$

$\Rightarrow \quad-\frac{17}{6}<\frac{1}{2}-\frac{2 x}{3}$
$\Rightarrow \quad-\frac{17}{6}-\frac{1}{2}<-\frac{2 x}{3}$
$\Rightarrow \quad \frac{-17-3}{6}<-\frac{2 x}{3}$
$\Rightarrow \quad-\frac{20}{6}<-\frac{2 x}{3} \Rightarrow \frac{10}{3}>\frac{2 x}{3}$

$$
5>x \Rightarrow x<5
$$

$$
\begin{array}{ll}
\Rightarrow & -\frac{2 x}{3} \leq 2-\frac{1}{2} \\
\Rightarrow & -\frac{2 x}{3} \leq \frac{3}{2} \\
\Rightarrow & -x \leq \frac{9}{4} \Rightarrow x \geq-\frac{9}{4} \tag{ii}
\end{array}
$$

From (i) and (ii), we get

$$
-\frac{9}{4} \leq x<5 \Rightarrow-2 \frac{1}{4} \leq x<5
$$

But as $x \in W$ the solution set is, $\{0,1,2,3,4\}$.
Required number line,

Ans.
(c)

Total number of outcomes $=6$,

$$
n(S)=6
$$

(i) A positive integer:

Favourable outcomes

$$
\begin{aligned}
& n(\mathrm{P})=\{1,2,3\}=3 \\
\therefore \quad & \mathrm{Q}(\mathrm{P})=\frac{n(P)}{n(S)}=\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

(ii) An integer greater than - 3 :

Favourable outcomes

$$
\begin{aligned}
& n(g)=\{1,2,3,-1,-2\}=5 \\
\therefore & P(g)=\frac{n(g)}{n(S)}=\frac{5}{6}
\end{aligned}
$$

(iii) The smallest integer :

Favourable outcomes,

$$
\begin{aligned}
n(\mathrm{I}) & =\{-3\} \\
\mathrm{P}(\mathrm{I}) & =\frac{n(\mathrm{I})}{n(S)}=\frac{1}{6}
\end{aligned}
$$

y-coordinate of P

$$
\begin{aligned}
& y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \\
& 3=\frac{6 m_{1}+2 m_{2}}{m_{1}+m_{2}}
\end{aligned}
$$

$$
\Rightarrow \quad 3 m_{1}+3 m_{2}=6 m_{1}+2 m_{2}
$$

$$
\Rightarrow \quad 3 m_{1}-6 m_{1}=2 m_{2}-3 m_{2}
$$

$$
\Rightarrow \quad-3 m_{1}=-m_{2}
$$

$$
\Rightarrow \quad 3 m_{1}=m_{2}
$$

$$
\Rightarrow \quad \frac{m_{1}}{m_{2}}=\frac{1}{3}
$$

$$
\Rightarrow \quad m_{1}: m_{2}=1: 3
$$

Ans.
(i) Now, $\quad x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}$

$$
\begin{aligned}
x & =\frac{1 \times 3+3(-4)}{1+3} \\
& =\frac{3-12}{4}=-\frac{9}{4}
\end{aligned}
$$

Ans.
Solution 3.
(b) Given,

$$
\begin{aligned}
& f(x)=x^{3}+10 x^{2}-37 x+26 \\
& f(1)=1+10-37+26=37-37=0
\end{aligned}
$$

Thus, $(x-1)$ is a factor of $f(x)$.

$$
\begin{gathered}
x-1 \begin{array}{l}
x^{3}+10 x^{2}-37 x+26 \\
x^{3}-x^{2} \\
-\quad+
\end{array} x^{2}+11 x-26 \\
\begin{array}{c}
11 x^{2}-37 x \\
-\begin{array}{l}
11 x^{2}-11 x \\
+
\end{array} \\
\frac{-26 x+26}{}+\quad- \\
0
\end{array}
\end{gathered}
$$

Thus,

$$
f(x)=(x-1)\left(x^{2}+11 x-26\right)
$$

$$
=(x-1)\left(x^{2}+13 x-2 x-26\right)
$$

$$
=(x-1)[x(x+13)-2(x+13)]
$$

$$
=(x-1)(x-2)(x+13)
$$

Thus, required factors are $(x-1),(x-2)$ and $(x+13)$.

Ans.
Solution 4.
Ans. (a) The numbers are $6,8,10,12,13$ and x

$$
\begin{align*}
n & =6 \\
\text { Mean } & =\frac{6+8+10+12+13+x}{6} \\
\text { Mean } & =\frac{49+x}{6} \tag{i}
\end{align*}
$$

ICSE Mathematics-2014
For Median, $n=6$ (even)

$$
\begin{align*}
\therefore \quad \text { Median } & =\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { term }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { term }}{2} \\
\text { Median } & =\frac{3^{\text {rd }} \text { term }+4^{\text {th }} \text { term }}{2} \\
& =\frac{10+12}{2} \\
& =\frac{22}{2}=11 \tag{ii}
\end{align*}
$$

$$
\therefore \quad \angle \mathrm{BDC}=180^{\circ}-\left(90^{\circ}+58^{\circ}\right)
$$

According to the question,

$$
\begin{array}{rlrl}
& & \text { Median } & =\text { Mean } \\
\therefore & & 11 & =\frac{49+x}{6} \\
\Rightarrow & x & =66-49 \\
\Rightarrow & x & =17 .
\end{array}
$$

The value of x is 17 .
Ans.
$=32^{\circ}$
(ii) BECD is a cyclic quadrilateral.

$$
\begin{array}{ll}
\therefore \angle \mathrm{BEC}+\angle \mathrm{BDC}= & 180^{\circ} \\
& \quad \text { (Opp. angles of a cyclic quadrilateral) } \\
\therefore & \angle \mathrm{BEC}=180^{\circ}-\angle \mathrm{BDC} \\
& =180^{\circ}-32^{\circ}=148^{\circ}
\end{array}
$$

Ans.

Ans.
(iii)

$$
\begin{aligned}
\angle \mathrm{BAC} & =\angle \mathrm{BDC} \\
& =32^{\circ}
\end{aligned}
$$

(Angles in the same segment of a circle are equal)
(i) Now, in $\triangle \mathrm{BDC}$
(Angle in a semi-circle)
$\angle \mathrm{BDC}+90^{\circ}+58^{\circ}=180^{\circ}$
(sum of the angles of a triangle)
(c) (i) On the graph.
(ii) Coordinates of $\mathrm{A}^{\prime}=(4,2)$.
(iii) Coordinates of $\mathrm{B}^{\prime}=(2,0)$.
(iv) Geometric name of figure $\mathrm{ABA}^{\prime} \mathrm{B}^{\prime}$ is Kite.

Ans.

Note : Instead of taking $2 \mathrm{~cm}=1$ unit on both axis, we have taken $1 \mathrm{~cm}=1$ unit on both the axis.

SECTION—B
Solution 5.
(b) (i)

$$
\frac{x^{2}+y^{2}}{x^{2}-y^{2}}=\frac{17}{8}
$$

Applying componendo and dividendo rule,

$$
\begin{aligned}
& & \frac{x^{2}+y^{2}+x^{2}-y^{2}}{x^{2}+y^{2}-x^{2}+y^{2}} & =\frac{17+8}{17-8} \\
\Rightarrow & & \frac{2 x^{2}}{2 y^{2}} & =\frac{25}{9} \\
\Rightarrow & & \frac{x^{2}}{y^{2}} & =\frac{25}{9} \\
\Rightarrow & & \frac{x}{y} & =\frac{5}{3} \\
& & x: y & =5: 3
\end{aligned}
$$

(ii) $\quad \frac{x}{y}=\frac{5}{3}$

Taking cube on both sides,

$$
\frac{x^{3}}{y^{3}}=\frac{125}{27}
$$

Applying componendo and dividendo rule,

$$
\begin{aligned}
& \frac{x^{3}+y^{3}}{x^{3}-y^{3}}=\frac{125+27}{125-27} \\
& \frac{x^{3}+y^{3}}{x^{3}-y^{3}}=\frac{152}{98}
\end{aligned}
$$

(c) Given, $\quad \angle \mathrm{ABC}=\angle \mathrm{DAC}$

$$
\begin{aligned}
\mathrm{AB} & =8 \mathrm{~cm}, \\
\mathrm{AC}=4 \mathrm{~cm}, \mathrm{AD} & =5 \mathrm{~cm} .
\end{aligned}
$$

(i) In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{BCA}$

$$
\begin{aligned}
& \angle \mathrm{ABC}=\angle \mathrm{DAC} \\
& \angle \mathrm{ACD}=\angle \mathrm{BCA} \\
\Rightarrow \quad & \Delta \mathrm{ACD}
\end{aligned} \sim \Delta \mathrm{BCA}
$$

(Given)
(Common)

Hence, $\triangle \mathrm{ACD} \sim \Delta \mathrm{BCA}$
(ii) As we have,

Since $\triangle \mathrm{ACD} \sim \Delta \mathrm{BCA}$, then their corresponding sides will be proportional.

$$
\begin{array}{ll}
& \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{CD}}{\mathrm{CA}}=\frac{\mathrm{AD}}{\mathrm{BA}} \\
\Rightarrow \quad & \frac{4}{\mathrm{BC}}=\frac{\mathrm{CD}}{4}=\frac{5}{8} \\
\Rightarrow \quad & \frac{4}{\mathrm{BC}}=\frac{5}{8}
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{BC}=\frac{8 \times 4}{5}=\frac{32}{5}=6.4 \mathrm{~cm} . \\
\text { and } & \frac{\mathrm{CD}}{4}=\frac{5}{8} \Rightarrow \mathrm{CD}=\frac{5 \times 4}{8} \\
\Rightarrow & \mathrm{CD}=2.5 \mathrm{~cm} .
\end{array}
$$

Ans.
(iii) Area of similar triangles are proportional to the square of their corresponding sides.

$$
\begin{aligned}
\frac{\text { Area of } \triangle \mathrm{ACD}}{\text { Area of } \triangle \mathrm{ABC}} & =\left(\frac{\mathrm{AC}}{\mathrm{BC}}\right)^{2} \\
& =\left(\frac{4}{6.4}\right)^{2}=\left(\frac{5}{8}\right)^{2}
\end{aligned}
$$

Thus, area of $\Delta \mathrm{ACD}:$ area of $\Delta \mathrm{ABC}=25: 64$.
Ans.

Solution 6.

(a) Equation of line passing through AC is

Here, $x_{2}=a, y_{1}=3, x_{2}=5, y_{2}=a$

$$
\begin{aligned}
\left(y-y_{1}\right) & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \\
\Rightarrow \quad(y-3) & =\left(\frac{a-3}{5-a}\right)(x-a)
\end{aligned}
$$

As if A, B and C are collinear then B will satisfy it, i.e.,

$$
\begin{aligned}
& \mathrm{A}(\mathrm{a}, 3) \quad \mathrm{B}(2,1) \quad \mathrm{C}(5, \mathrm{a}) \\
& \\
& \\
& (1-3)=\left(\frac{a-3}{5-a}\right) \\
& (2-a)
\end{aligned}
$$

$$
\begin{aligned}
-2(5-a) & =(a-3)(2-a) \\
-10+2 a & =2 a-6-a^{2}+3 a \\
a^{2}-3 a-4 & =0 \\
a^{2}-4 a+a-4 & =0 \\
a(a-4)+1(a-4) & =0 \\
\Rightarrow \quad(a-4)(a+1) & =0 \\
\Rightarrow \quad a & =4 \text { or }-1 .
\end{aligned}
$$

Ans.
Thus, required equation of straight line is
When, $a=4 \quad$ When, $a=-1$

$$
\begin{equation*}
(y-3)=\left(\frac{4-3}{5-4}\right)(x-4) \quad(y-3)=\left(\frac{-1-3}{5+1}\right) \tag{x+1}
\end{equation*}
$$

$y-3=\left(\frac{1}{1}\right)(x-4) \quad(y-3)=\left(\frac{-4}{6}\right)(x+1)$
$x-y-1=0$

$$
y-3=\frac{-2}{3}(x+1)
$$

$$
3 y-9=-2 x-2
$$

$$
2 x+3 y-7=0 \quad \text { Ans. }
$$

(b)

Face value $=₹ 50$,
Dividend \% = 15\%
Market value $=50+20 \%$ of 50

$$
=50+10=₹ 60
$$

Annual dividend $=₹ 600$

ICSE Mathematics-2014
(i) As we know,
$r=14 \mathrm{~cm}$

Dividend $\% \times($ No. of shares \times Face value)
$=$ Dividend
$\frac{15}{100} \times$ No. of shares $\times 50=600$
No. of shares $=\frac{600 \times 100}{15 \times 50}=80$.
Ans.
(ii) Total investment $=80 \times$ Market value

$$
=80 \times 60=₹ 4,800 \text {. }
$$

Ans.
(iii) Rate of return on his investment

$$
\begin{aligned}
& =\left(\frac{\text { Total dividend }}{\text { Investment }} \times 100\right) \% \\
& =\left(\frac{600}{4,800} \times 100\right) \% \\
& =\left(\frac{100}{8}\right) \%=12 \cdot 5 \% . \quad \text { Ans. }
\end{aligned}
$$

(c) (i) Surface area of sphere $=2464 \mathrm{~cm}^{2}$

$$
\begin{aligned}
4 \pi r^{2} & =2464 \\
4 \times \frac{22}{7} \times r^{2} & =2464 \\
r^{2} & =\frac{2464 \times 7}{4 \times 22} \\
r^{2} & =196
\end{aligned}
$$

Thus, radius of the sphere is 14 cm .
(ii) For cone, $\quad r_{1}=3.5 \mathrm{~cm}, h_{1}=7 \mathrm{~cm}$

Volume of cone $=\frac{1}{3} \pi r_{1}{ }^{2} h_{1}$

$$
=\frac{1}{3} \pi \times 3.5 \times 3.5 \times 7
$$

Volume of given sphere

$$
\begin{aligned}
& =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi \times 14 \times 14 \times 14
\end{aligned}
$$

$\therefore \quad$ Number of cones recast

$$
\begin{aligned}
& =\frac{\text { Volume of sphere }}{\text { Volume of cone }} \\
& =\frac{\frac{4}{3} \pi \times 14 \times 14 \times 14}{\frac{1}{3} \pi \times 3.5 \times 3.5 \times 7} \\
& =\frac{4 \times 14 \times 14 \times 14}{3.5 \times 3.5 \times 7} \\
& =4 \times 4 \times 4 \times 2=128 .
\end{aligned}
$$

Thus, number of cones formed are 128.

Ans.

$$
\begin{array}{rlrl}
& & \mathrm{PT}^{2} & =\mathrm{PD} \times \mathrm{PC} \\
\Rightarrow & \mathrm{PT}^{2} & =\mathrm{PD} \times(\mathrm{PD}+\mathrm{CD}) \\
& & =5 \times(5+7.8) \\
\Rightarrow & \mathrm{PT}^{2} & =5 \times 12.8 \\
\Rightarrow & \mathrm{PT}^{2} & =64 \\
\Rightarrow & & \mathrm{PT} & =8 \mathrm{~cm}
\end{array}
$$

Now in \triangle POT

$$
\mathrm{PO}^{2}=\mathrm{OT}^{2}+\mathrm{PT}^{2}
$$

(By Pythagoras Theorem)
$\Rightarrow \quad(r+4)^{2}=r^{2}+64$
$\Rightarrow \quad r^{2}+16+8 r=r^{2}+64$
$\Rightarrow \quad 8 r=48$
$\Rightarrow \quad r=6$
(i) Thus,
$\mathrm{AB}=2 r=12 \mathrm{~cm}$
(ii) Length of tangent $\mathrm{PT}=8 \mathrm{~cm}$.
5. From O, drop perpendicular on side BC. Let OD be the perpendicular drawn on BC .
6. With O as centre, and OD as radius. Draw a circle.
The circle so obtained is the required circle.
Given that,

$$
\mathrm{BC}=6.5 \mathrm{~cm}, \mathrm{AB}=5.5 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}
$$

\therefore Radius of incircle is 2.5 cm .
Ans.
(c) Histogram on the graph paper.

Join A to C and B to D. AC and BD meet at K. Drop a perpendicular from K to X -axis at L .

$$
\therefore \quad \text { Mode }=22
$$

Ans.

Solution 9.
(a) Given $(x-9):(3 x+6)$ is duplicate ratio of $4: 9$.

$$
\begin{array}{ll}
\therefore & \frac{x-9}{3 x+6}=\left(\frac{4}{9}\right)^{2} \\
\Rightarrow & \frac{x-9}{3 x+6}=\frac{16}{81} \\
\Rightarrow & 81(x-9)=16(3 x+6) \\
\Rightarrow & 81 x-729=48 x+96
\end{array}
$$

ICSE Mathematics-2014
$\Rightarrow \quad 81 x-48 x=96+729 \quad$ From question,
$\Rightarrow \quad 33 x=825$
$\Rightarrow \quad x=\frac{825}{33}=25$
Thus, required value of x is 25 .
(b) $\quad(x-1)^{2}-3 x+4=0$
$\Rightarrow \quad x^{2}+1-2 x-3 x+4=0$
$\Rightarrow \quad x^{2}-5 x+5=0$
Since, middle term cannot be splitted, so we will
compare it with $a x^{2}+b x+c=0$, we get

$$
a=1, b=-5, c=5
$$

By using the formula,

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{5 \pm \sqrt{25-20}}{2}=\frac{5 \pm \sqrt{5}}{2} \\
x & =\frac{5 \pm 2.24}{2}
\end{aligned}
$$

Taking +ve sign
Taking - ve sign

$$
\begin{aligned}
x & =\frac{5+2.24}{2} \\
& =\frac{-7.24}{2}
\end{aligned}
$$

$$
\Rightarrow x=3.62
$$

Thus, required values are 3.62 and 1.38.
Solution 10.
(a) Let, the unit digit be x and tens digit will be $\frac{6}{x}$. As two digit number is $(10 a+b)$. Then, two digit number is $10 \times \frac{6}{x}+x=\frac{60}{x}+x$.

$$
\begin{array}{rlrl}
& & \frac{60}{x}+x+9 & =10 x+\frac{6}{x} \\
& & \frac{60+x^{2}+9 x}{x} & =\frac{10 x^{2}+6}{x} \\
\Rightarrow & & 60+x^{2}+9 x & =10 x^{2}+6 \\
\Rightarrow & & 9 x^{2}-9 x-54 & =0 \\
\Rightarrow & & 9\left(x^{2}-x-6\right) & =0 \\
\Rightarrow & & x^{2}-x-6 & =0 \\
\Rightarrow & & x^{2}-3 x+2 x-6 & =0 \\
\Rightarrow & x(x-3)+2(x-3) & =0 \\
\Rightarrow & & (x-3)(x+2) & =0 \\
\Rightarrow & & x & =-2 \text { or } 3
\end{array}
$$

As x can't be negative.
So, required two digit number,

$$
\frac{60}{x}+x=\frac{60}{3}+3=23
$$

Ans.
(b)

Marks	c.f.	Points
Less than 10	3	$(10,3)$
Less than 20	10	$(20,10)$
Less than 30	22	$(30,22)$
Less than 40	39	$(40,39)$
Less than 50	62	$(50,62)$
Less than 60	76	$(60,76)$
Less than 70	85	$(70,85)$
Less than 80	91	$(80,91)$
Less than 90	96	$(90,96)$
Less than 100	100	$(100,100)$

No. formed by interchanging digits $=\left(10 x+\frac{6}{x}\right)$

Note: Instead of $2 \mathrm{~cm}=10$ units, we have taken
$1 \mathrm{~cm}=10$ units on both axis].
Using graph,
(i) Median $=\left(\frac{\mathrm{N}}{2}\right)^{\text {th }}$ observation

$$
\begin{aligned}
& =\left(\frac{100}{2}\right)^{\text {th }} \text { observation } \\
& =50^{\text {th }} \text { observation } \\
& =45
\end{aligned}
$$

Ans.
(ii) Lower Quartile $\left(\mathrm{Q}_{1}\right)$

$$
\begin{aligned}
& =\left(\frac{\mathrm{N}}{4}\right)^{\text {th }} \text { observation } \\
& =\left(\frac{100}{4}\right)^{\text {th }} \text { observation } \\
& =25^{\text {th }} \text { observation }=32
\end{aligned}
$$

Ans.
(iii) Number of students who obtained more than 85\% marks

$$
=(100-94)=6 . \quad \text { Ans. }
$$

(iv) Number of students who did not pass if passing \% of marks is 35

$$
=30
$$

Ans.

Solution 11.

(b)

$$
\text { L.H.S. }=(\sin \theta+\cos \theta)(\tan \theta+\cot \theta)
$$

$$
\begin{aligned}
& =(\sin \theta+\cos \theta)\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right) \\
& {\left[\because \tan A=\frac{\sin A}{\cos A^{\prime}} \cot A=\frac{\cos A}{\sin A}\right]} \\
& =(\sin \theta+\cos \theta)\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}\right) \\
& =(\sin \theta+\cos \theta) \frac{1}{\sin \theta \cos \theta} \\
& \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sin \theta}{\sin \theta \cos \theta}+\frac{\cos \theta}{\sin \theta \cos \theta} \\
& =\frac{1}{\cos \theta}+\frac{1}{\sin \theta} \\
& =\sec \theta+\operatorname{cosec} \theta=\text { R.H.S. }
\end{aligned}
$$

Hence Proved.

(c) Let aeroplane be at position A and BC be the river. Drop a perpendicular from A on $B C$ let it intersect BC at D.

In $\triangle \mathrm{ADB}$,

$$
\begin{align*}
\tan 60^{\circ} & =\frac{\mathrm{AD}}{\mathrm{BD}} \\
\sqrt{3} & =\frac{250}{x} \\
x & =\frac{250}{\sqrt{3}} \mathrm{~m} \tag{i}
\end{align*}
$$

In $\Delta \mathrm{ADC}$,

$$
\begin{aligned}
\tan 45^{\circ} & =\frac{\mathrm{AD}}{\mathrm{DC}} \\
1 & =\frac{250}{y} \\
y & =250 \mathrm{~m}
\end{aligned}
$$

Thus, width of the river $=250+\frac{250}{\sqrt{3}}=394 \mathrm{~m}$
Ans.

Questions

SECTION—A (40 Marks)

(Attempt all questions from this Section)
Question 1.
(a) Given $A=\left[\begin{array}{rr}2 & -6 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{rr}-3 & 2 \\ 4 & 0\end{array}\right] C=\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right]$

Find the matrix X such that $A+2 X=2 B+C$.
(b) At what rate $\%$ p.a. will a sum of $₹ 4,000$ yield ₹ 1,324 as compound interest in 3 years ?**
(c) The median of the following observations 11, 12, 14, $(x-2),(x+4),(x+9), 32,38,47$ arranged in ascending order is 24 . Find the value of x and hence find the mean.
[4]
Question 2.
(a) What number must be added to each of the numbers 6, 15, 20 and 43 to make them proportional ?
[3]
(b) If $(x-2)$ is a factor of the expression $2 x^{3}+a x^{2}+$ $b x-14$ and when the expression is divided by $(x-3)$, it leaves a remainder 52, find the values of a and b.
(c) Draw a histogram for the following frequency distribution and find the mode from the graph :
[4]

Class	$0-5$	$5-10$	$10-$	$15-$	$20-$	$25-$
		15	20	25	30	
Frequency	2	5	18	14	8	5

Question 3.
(a) Without using tables evaluate $3 \cos 80^{\circ} \cdot \operatorname{cosec} 10^{\circ}+2$ $\sin 59^{\circ} \sec 31^{\circ} .^{* *}$
(b) In the given figure, $\Rightarrow \angle B A D=65^{\circ}$
$\angle A B D=70^{\circ}, \angle B D C=45^{\circ}$.

(i) Prove that $A C$ is a diameter of the circle.
(ii) Find $\angle A C B$
(c) $A B$ is a diameter of a circle with centre $C=(-2,5)$. If $A=(3,-7)$. Find
(i) the length of radius $A C^{* *}$
(ii) the coordinates of B.
** Answer is not given due to change in the present syllabus.

Question 4.
(a) Solve the following equation and calculate the answer correct to two decimal places :

$$
\begin{equation*}
x^{2}-5 x-10=0 \tag{3}
\end{equation*}
$$

(b) In the given figure, $A B$ and $D E$ are perpendicular to $B C$.

(i) Prove that $\triangle A B C \sim \triangle D E C$
(ii) If $A B=6 \mathrm{~cm} ; D E=4 \mathrm{~cm}$ and $A C=15 \mathrm{~cm}$. Calculate CD.
(iii) Find the ratio of the area of $\triangle A B C$: area of $\triangle D E C$.
(c) Using a graph paper, plot the points $A(6,4)$ and B $(0,4)$.
(i) Reflect A and B in the origin to get the images A^{\prime} and B^{\prime}.
(ii) Write the coordinates of A^{\prime} and B^{\prime}.
(iii) State the geometrical name for the figure $A B A^{\prime} B^{\prime}$.
(iv) Find its perimeter.

SECTION—B (40 Marks)

(Attempt any four questions from this Section)
Question 5.
(a) Solve the following inequation, write the solution set and represent it on the number line :

$$
\begin{equation*}
-\frac{x}{3} \leq \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}, x \in R \tag{3}
\end{equation*}
$$

Where R is a set of real numbers.
(b) Mr. Britto deposits a certain sum of money each month in a Recurring Deposit Account of a bank. If the rate of interest is of 8% per annum and Mr. Britto gets ₹ 8,088 from the bank after 3 years, find the value of his monthly instalment.
(c) Salman buys 50 shares of face value ₹ 100 available at ₹ 132 .
(i) What is his investment?
(ii) If the dividend is $7 \cdot 5 \%$, what will be his annual income?
(iii) If he wants to increase his annual income by $₹ 150$, how many extra shares should he buy ? [4]
Question 6.
(a) Show that,

$$
\begin{equation*}
\sqrt{\frac{1-\cos A}{1+\cos A}}=\frac{\sin A}{1+\cos A} \tag{3}
\end{equation*}
$$

Question 8.
(a) Find x and y if $\left[\begin{array}{ll}x & 3 x \\ y & 4 y\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{c}5 \\ 12\end{array}\right]$.
(b) A solid sphere of radius 15 cm is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm . Calculate the number of cones formed.
(c) Without solving the following quadratic equation, find the value of ' p ' for which the given equation has real and equal roots :

$$
\begin{equation*}
x^{2}+(p-3) x+p=0 \tag{4}
\end{equation*}
$$

Question 9.
(a) In the figure alongside, $O A B$ is a quadrant of a circle. The radius $O A=3.5 \mathrm{~cm}$ and $O D=2 \mathrm{~cm}$. Calculate the area of the shaded portion.**
(Take $\pi=\frac{22}{7}$)

(b) A box contains some black balls and 30 white balls. If the probability of drawing a black ball is two-fifths of a white ball, find the number of black balls in the box.
(c) Find the mean of the following distribution by step deviation method:
[4]

Class interval	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	10	6	8	12	5	9

Question 10.

(a) Using a ruler and compasses only :
(i) Construct a triangle $A B C$ with the following data: $A B=3.5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\angle A B C=120^{\circ}$.
(ii) In the same diagram, draw a circle with $B C$ as diameter. Find a point P on the circumference of the circle which is equidistant from $A B$ and $B C$.
(iii) Measure $\angle B C P$.
(b) The marks obtained by 120 students in a test are given below:

ICSE Mathematics-2013

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
No. of Students	5	9	16	22	26	18	11	6	4	3

Draw an ogive for the given distribution on a graph sheet.
Use suitable scale for ogive to estimate the following :
(i) The median.
(ii) The number of students who obtained more than 75% marks in the test.
(iii) The number of students who did not pass the test if minimum marks required to pass is 40 .

Question 11.
(a) In the figure given below, the line segment $A B$ meets X-axis at A and Y-axis at B. The point $P(-3,4)$ on $A B$ divides it in the ratio $2: 3$. Find the coordinates of A and B.

(b) Using the properties of proportion, solve for x, given

$$
\begin{equation*}
\frac{x^{4}+1}{2 x^{2}}=\frac{17}{8} \tag{3}
\end{equation*}
$$

(c) A shopkeeper purchase a certain number of books for ₹ 960. If the cost per book was ₹ 8 less, the number of books that could be purchased for ₹ 960 would be 4 more. Write an equation, taking the original cost of each book to be $₹ x$, and solve it to find the original cost of the books.

ANSWERS

SECTION—A

Solution 1.
(a) Given, $\mathrm{A}=\left[\begin{array}{rr}2 & -6 \\ 2 & 0\end{array}\right]=\mathrm{B}\left[\begin{array}{rr}-3 & 2 \\ 4 & 0\end{array}\right] \mathrm{C}=\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right]$

$$
A+2 X=2 B+C
$$

$$
\left[\begin{array}{rr}
2 & -6 \\
2 & 0
\end{array}\right]+2 X=2\left[\begin{array}{rr}
-3 & 2 \\
4 & 0
\end{array}\right]+\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
$$

$$
2 X=\left[\begin{array}{rr}
-6 & 4 \\
8 & 0
\end{array}\right]+\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]-\left[\begin{array}{rr}
2 & -6 \\
2 & 0
\end{array}\right]
$$

$$
2 X=\left[\begin{array}{rr}
-6+4-2 & 4+0+6 \\
8+0-2 & 0+2-0
\end{array}\right]
$$

$$
=\left[\begin{array}{rr}
-4 & 10 \\
6 & 2
\end{array}\right]
$$

$$
X=\frac{1}{2}\left[\begin{array}{rr}
-4 & 10 \\
6 & 2
\end{array}\right]
$$

$$
\therefore \quad X=\left[\begin{array}{cc}
-2 & 5 \\
3 & 1
\end{array}\right] \quad \text { Ans. }
$$

(c) $11,12,14,(x-2),(x+4),(x+9), 32,38,47$

Since,

$$
n=9, \text { odd }
$$

$$
\begin{aligned}
\therefore \quad \text { Median } & =\left(\frac{9+1}{2}\right)^{\text {th }} \text { observation } \\
& =5^{\text {th }} \text { observation }=(x+4)
\end{aligned}
$$

Median is 24 for the given data

$$
\begin{array}{rlrl}
\therefore & & 24 & =x+4 \\
& & 24-4 & =x \\
\Rightarrow & x & =20
\end{array}
$$

Ans.
\therefore Observation are 11, 12, 14, $(20-2),(20+4)$, $(20+9), 32,38,47$
or $11,12,14,18,24,29,32,38,47$

$$
\begin{aligned}
\text { Mean }=\bar{X}= & \frac{11+12+14+18+24}{+29+32+38+47} \\
& \frac{225}{9}=25
\end{aligned}
$$

The mean of the given data is 25 .
Ans.

Solution 2.

(a) Let the number to be added to each of the numbers $6,15,20$ and 43 be x.
$\therefore 6+x, 15+x, 20+x$ and $43+x$ are in proportion
$\Rightarrow \quad 6+x: 15+x:: 20+x: 43+x$
$\Rightarrow \quad \frac{6+x}{15+x}=\frac{20+x}{43+x}$
$\Rightarrow \quad(6+x)(43+x)=(15+x)(20+x)$
$\Rightarrow 258+6 x+43 x+x^{2}=300+15 x+20 x+x^{2}$
$\Rightarrow \quad 258+49 x+x^{2}=300+35 x+x^{2}$
$\Rightarrow \quad 49 x-35 x+x^{2}-x^{2}=300-258$
$\Rightarrow \quad 49 x-35 x=300-258$
$\Rightarrow \quad 14 x=42$
$\Rightarrow \quad x=\frac{42}{14}=3$
\therefore Required number is 3 .
(b) Let, $\quad f(x)=2 x^{3}+a x^{2}+b x-14$

Ans.
As $(x-2)$ is a factor of equation (i)
\therefore Putting

$$
x-2=0
$$

Solution 3.
$\Rightarrow \quad x=2$ in equation (i)
(b) Given: $\quad \angle \mathrm{BAD}=65^{\circ}$

We get,
$f(2)=0$
and

$$
f(2)=2(2)^{3}+a(2)^{2}+b(2)-14
$$

$$
0=16+4 a+2 b-14
$$

$\therefore \quad 4 a+2 b=-2$
or $\quad 2 a+b=-1$
Again, when $f(x)$ is divided by $(x-3)$, it leaves remainder 52.

$$
\begin{array}{rlrl}
& \text { Putting } & x-3 & =0 \\
\Rightarrow & x & =3 \\
& \text { We get, } & f(3) & =52 \\
\Rightarrow & & f(3) & =2(3)^{3}+a(3)^{2}+b(3)-14 \\
& \text { and, } & 52 & =54+9 a+3 b-14 \\
& \therefore & 52 & =9 a+3 b+40 \\
\Rightarrow & 52-40 & =9 a+3 b \\
\Rightarrow & 12 & =9 a+3 b \\
& \text { or } & 4 & =3 a+b
\end{array}
$$

Solving (ii) and (iii)

$$
\begin{gathered}
3 a+b=4 \\
2 a+b=-1 \\
-\quad+ \\
\hline a=5
\end{gathered}
$$

Ans.
Substitute $a=5$ in equation (iii),
$\Rightarrow \quad 3 \times 5+b=4$
$\Rightarrow \quad 15+b=4$
$\Rightarrow \quad b=4-15$
$\Rightarrow \quad b=-11$
Ans.
(c)

Using graph, in the biggest bar of class interval 10-15, we will join A to B and D to C. $A B$ and CD meet at K . From K, drop a perpendicular on X-axis at L. Therefore, mode is 14.

$$
\angle \mathrm{ABD}=70^{\circ}
$$

$$
\angle \mathrm{BDC}=45^{\circ}
$$

(i) In $\triangle \mathrm{ABD}$,

$$
\angle \mathrm{BAD}+\angle \mathrm{ABD}+\angle \mathrm{ADB}=180^{\circ}
$$

(Sum of three angles of a Δ)

$$
65^{\circ}+70^{\circ}+\angle \mathrm{ADB}=180^{\circ}
$$

$$
\therefore \quad \angle \mathrm{ADB}=180^{\circ}-\left(65^{\circ}+70^{\circ}\right)=45^{\circ}
$$

$$
\because \quad \angle \mathrm{ADC}=\angle \mathrm{ADB}+\angle \mathrm{BDC}
$$

$$
\Rightarrow \quad=45^{\circ}+45^{\circ}=90^{\circ}
$$

$\Rightarrow \mathrm{AC}$ is the diameter of the circle.
[Angle in a semi-circle is 90°] Hence Proved.
(ii)

$$
\angle \mathrm{ACB}=\angle \mathrm{ADB}=45^{\circ}
$$

(Angles in the same segment of a circle)
Ans.
(c) (ii) As ' C ' is mid-point of AB

$-2=\frac{3+x}{2}$ and $5=\frac{-7+y}{2}$
[By mid-point formula]
or

$$
-4=3+x \text { and } 10=-7+y
$$

$$
x=-7 \quad \text { and } \quad y=17
$$

\therefore Coordinates of B are $(-7,17)$.
Ans.
Solution 4.
(a) Given equation is, $x^{2}-5 x-10=0$

We know,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(As, $a=1, b=-5$ and $c=-10$)

$$
\begin{aligned}
\Rightarrow & =\frac{5 \pm \sqrt{25-4 \times 1 \times(-10)}}{2} \\
& =\frac{5 \pm \sqrt{65}}{2} \\
& =\frac{5 \pm 8.062}{2} \\
x_{1} & =\frac{5+8.062}{2} \\
& =\frac{13.062}{2}
\end{aligned}
$$

ICSE Mathematics-2013

To prove : $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEC}$
Proof: In $\triangle A B C$ and $\triangle D E C$

$$
\begin{array}{rlrr}
\angle \mathrm{ABC} & =\angle \mathrm{DEC}=90^{\circ} \quad \text { (Given) } \\
\angle \mathrm{C} & =\angle \mathrm{C} & & \text { (Common) } \\
\therefore & & & \\
& & & \\
& & & \text { HBC }
\end{array}
$$

\therefore Perimeter of $A B A^{\prime} \mathrm{B}^{\prime}$

$$
\begin{aligned}
& =\mathrm{AB}+\mathrm{BA}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{AB}^{\prime} \\
& =6+10+6+10 \quad \text { Ans. } \\
& =32 \text { units }
\end{aligned}
$$

SECTION—B

(ii) $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{DE}=4 \mathrm{~cm}$

$$
\mathrm{AC}=15 \mathrm{~cm}, \mathrm{CD}=?
$$

Since $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEC}$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{CD}}$
(Corresponding sides of similar triangles are proportional)
$\Rightarrow \quad \frac{6}{4}=\frac{15}{\mathrm{CD}}$
$\Rightarrow \quad \mathrm{CD}=\frac{15 \times 4}{6}=10 \mathrm{~cm}$.
(iii) $\frac{\text { Area of } \triangle \mathrm{ABC}}{\text { Area of } \triangle \mathrm{DEC}}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}$
(Area theorem)

$$
\begin{align*}
& =\frac{36}{16} \tag{i}\\
& =\frac{9}{4} \text { or } 9: 4
\end{align*}
$$

Ans.
Solution 5.
(a) $\quad-\frac{x}{3} \leq \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}, x \in \mathrm{R}$

$$
\begin{array}{rl|r}
-\frac{x}{3} & \leq \frac{x}{2}-1 \frac{1}{3} & \frac{x}{2}-\frac{4}{3}<\frac{1}{6} \\
-\frac{x}{3} & \leq \frac{x}{2}-\frac{4}{3} & \frac{x}{2}<\frac{1}{6} \\
\frac{4}{3} & \leq \frac{x}{2}+\frac{x}{3} & \frac{x}{2}<\frac{1+}{6} \\
\frac{4}{3} & \leq \frac{5 x}{6} & x<\frac{9 \times}{6} \\
\frac{6}{5} \times \frac{4}{3} & \leq x & x<3
\end{array}
$$

$$
\frac{8}{5} \leq x
$$

From equations (i) and (ii), we get

$$
\begin{aligned}
& \frac{8}{5} & \leq x<3 \\
\text { or } & 1 \cdot 6 & \leq x<3
\end{aligned}
$$

\therefore Solution set $\{x: 1.6 \leq x<3, x \in \mathrm{R}\}$ Required number line is,

Ans.
(b) Let the monthly instalment be ₹ x.

Here, $n=36$, M.V. $=₹ 8,088, r=8 \%$ p.a.,

$$
\therefore \quad \begin{aligned}
\mathrm{I} & =\mathrm{P} \frac{n(n+1)}{2 \times 12} \times \frac{r}{100} \\
\text { M.V. } & =\mathrm{P} \times n+\mathrm{I} \\
8,088 & =x \times 36+\left[\frac{x \times 36 \times 37}{2 \times 12} \times \frac{8}{100}\right] \\
8,088 & =36 x+\frac{111 x}{25}
\end{aligned}
$$

$$
\begin{array}{rlrl}
8,088 & =\frac{900 x+111 x}{25} \\
8,088 \times 25 & =1011 x \\
\therefore & x & =\frac{8088 \times 25}{1011}=200 .
\end{array}
$$

\therefore Monthly instalment is ₹ 200 .
(c) Given, Number of shares $=50$

$$
\begin{array}{r}
\text { F.V. }=\text { ₹ } 100 \\
\text { M.V. }=\text { ₹ } 132
\end{array}
$$

(i) Investment $=$ M.V. \times Number of shares

$$
=132 \times 50=₹ 6,600 \quad \text { Ans. }
$$

(ii) Dividend on 1 share

$$
\begin{aligned}
& =7.5 \% \text { of } 100 \\
& =\frac{7.5 \times 100}{100}=₹ 7.5
\end{aligned}
$$

\therefore Annual Income (A.I.)

$$
\begin{aligned}
& =\text { Dividend on } 1 \text { share } \\
& \quad \times \text { No. of shares } \\
& =7.5 \times 50 \\
& =₹ 375
\end{aligned}
$$

(iii)New annual income required

$$
=₹(375+150)=₹ 525
$$

\therefore New number of shares $=\frac{525}{7 \cdot 5}=70$
\therefore No. of extra share he should buy

$$
=70-50=20
$$

Ans.
Solution 6.
(a) To prove, $\sqrt{\frac{1-\cos A}{1+\cos A}}=\frac{\sin A}{1+\cos A}$

$$
\text { L.H.S. }=\sqrt{\frac{1-\cos A}{1+\cos A}}=\sqrt{\frac{1-\cos A}{1+\cos A} \times \frac{1+\cos A}{1+\cos A}}
$$

$$
=\sqrt{\frac{\left(1-\cos ^{2} \mathrm{~A}\right)}{(1+\cos \mathrm{A})^{2}}}
$$

$$
=\sqrt{\frac{\sin ^{2} A}{(1+\cos A)^{2}}}
$$

$$
=\sqrt{\left(\frac{\sin \mathrm{A}}{1+\cos \mathrm{A}}\right)^{2}}
$$

$$
=\frac{\sin \mathrm{A}}{1+\cos \mathrm{A}}=\text { R.H.S. }
$$

Hence Proved.
(b) Given, $\angle \mathrm{ABC}=100^{\circ}, \angle \mathrm{ACD}=40^{\circ}$ and $C T$ is a tangent at C.

$$
\angle \mathrm{ABC}+\angle \mathrm{ADC}=180^{\circ}
$$

(Opposite angles of a cyclic quadrilateral) $100^{\circ}+\angle \mathrm{ADC}=180^{\circ}$
$\therefore \quad \angle \mathrm{ADC}=180^{\circ}-100^{\circ}=80^{\circ} . \quad$ Ans.

Now, in $\triangle \mathrm{ACD}$

$$
\angle \mathrm{ACD}+\angle \mathrm{ADC}+\angle \mathrm{CAD}=180^{\circ}
$$

(sum of angles of a Δ)

$$
40^{\circ}+80^{\circ}+\angle \mathrm{CAD}=180^{\circ}
$$

$$
\angle \mathrm{CAD}=180^{\circ}-120^{\circ}=60^{\circ}
$$

Now, $\quad \angle \mathrm{DCT}=\angle \mathrm{CAD}=60^{\circ}$
(Alternate segment theorem) Ans.
Solution 7.
(a) Given, $\mathrm{A}(3,5), \mathrm{B}(7,8)$ and $\mathrm{C}(1,-10)$ are 3 co-ordinates of Δ. Median is drawn from A at BC .
Coordinates of $\mathrm{D} \equiv\left(\frac{7+1}{2}, \frac{8-10}{2}\right) \equiv(4,-1)$

(Mid point formula)
Now, equation of AD \{Median through A\}

$$
\begin{aligned}
\left(y-y_{1}\right) & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \\
x_{1} & =3, \quad x_{2}=4 \\
y_{1} & =5, \quad y_{2}=-1 \\
y-5 & =\frac{-1-5}{4-3}(x-3) \\
y-5 & =-6(x-3) \\
y-5 & =-6 x+18
\end{aligned}
$$

or $\quad 6 x+y-23=0$
Ans.
(c) We draw $\mathrm{DE} \perp \mathrm{AB}$

Let

$$
\begin{aligned}
& \mathrm{BC}=x=\mathrm{ED} \\
& \mathrm{AB}=60 \text { (given) }
\end{aligned}
$$

$$
\mathrm{DC}=h
$$

$$
\begin{array}{rlrl}
\Rightarrow & & \mathrm{BE} & =\mathrm{CD}=h \\
\therefore & & \mathrm{AE} & =\mathrm{AB}-\mathrm{BE} \\
& & =60-h
\end{array}
$$

(i) In $\triangle \mathrm{ABC}, \frac{\mathrm{AB}}{\mathrm{BC}}=\tan 60^{\circ}$

$$
\frac{60}{x}=\sqrt{3}
$$

ICSE Mathematics-2013

$$
\begin{aligned}
\Rightarrow \quad x & =\frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{60 \sqrt{3}}{3} \\
& =20 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Horizontal distance between lamp post and building is $20 \sqrt{3} \mathrm{~m}$.

Ans.
(ii) In $\triangle \mathrm{AED}, \frac{\mathrm{AE}}{\mathrm{ED}}=\tan 30^{\circ}$

$$
\begin{array}{rlrl}
& & \frac{60-h}{x} & =\frac{1}{\sqrt{3}} \\
\Rightarrow & & \frac{60-h}{20 \sqrt{3}} & =\frac{1}{\sqrt{3}} \\
\Rightarrow & & 60-h & =20 \\
\Rightarrow & h & =60-20=40 \mathrm{m.} .
\end{array}
$$

\therefore Height of lamp post is 40 m .

Solution 8.

(a) Given, $\left[\begin{array}{ll}x & 3 x \\ y & 4 y\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{c}5 \\ 12\end{array}\right]$

$$
\Rightarrow \quad\left[\begin{array}{l}
2 x+3 x \\
2 y+4 y
\end{array}\right]=\left[\begin{array}{c}
5 \\
12
\end{array}\right] \Rightarrow\left[\begin{array}{l}
5 x \\
6 y
\end{array}\right]=\left[\begin{array}{c}
5 \\
12
\end{array}\right]
$$

On comparing, we get

$$
\begin{aligned}
\Rightarrow & 5 x & =5 \\
\Rightarrow & x & =1 \\
\text { and } & 6 y & =12 \\
\Rightarrow & y & =2
\end{aligned}
$$

(b) Given, in sphere, $r=15 \mathrm{~cm}$ and in cone, $r=2.5 \mathrm{~cm}, h=8 \mathrm{~cm}$.

$$
\begin{aligned}
\text { Number of cones } & =\frac{\text { Volume of solid sphere }}{\text { Volume of } 1 \text { cone }} \\
& =\frac{\frac{4}{3} \pi(15)^{3}}{\frac{1}{3} \pi(2 \cdot 5)^{2} \times 8}
\end{aligned}
$$

Ans.

Ans.

$$
=\frac{4 \times 15 \times 15 \times 15}{2 \cdot 5 \times 2 \cdot 5 \times 8}=270
$$

\therefore Number of cones formed are 270 .
Ans.
(c) Given quadratic equation is,

$$
x^{2}+(p-3) x+p=0
$$

Here $a=1, b=p-3, c=p$
For real and equal roots

$$
\begin{array}{rlrl}
& & D=b^{2}-4 a c & =0 \\
\Rightarrow & & (p-3)^{2}-4 \times 1 \times p & =0 \\
\Rightarrow & p^{2}-6 p+9-4 p & =0 \\
\Rightarrow & p^{2}-10 p+9 & =0 \\
\Rightarrow & p^{2}-p-9 p+9 & =0 \\
\Rightarrow & p(p-1)-9(p-1) & =0 \\
\Rightarrow & & (p-1)(p-9) & =0 \\
\Rightarrow & & p & =1 \text { or } p=9
\end{array}
$$

The value of p is 1 or 9 .
Solution 9.
(b) Let the number of black balls $=x$

White balls $=30$
Total balls $=x+30$

$$
\mathrm{P}(\text { Black ball })=\frac{x}{x+30}
$$

$$
P(\text { White ball })=\frac{30}{x+30}
$$

According to the question

$$
\mathrm{P}(\text { Black ball })=\frac{2}{5} \mathrm{P}(\text { White ball })
$$

$$
\frac{x}{x+30}=\frac{2}{5} \times \frac{30}{x+30}
$$

or

$$
\begin{aligned}
& x=\frac{2}{5} \times 30 \\
& x=12
\end{aligned}
$$

\therefore Number of black balls $=12$

$u=\frac{x-A}{h}$	$f . u$
-3	-30
-2	-12
-1	-8
0	0
1	5
2	$\sum f u=-27$
	$=55+\frac{(-27)}{50} \times 10$
	$=55-5 \cdot 4=49.6$

The mean of the distribution is 49.6 .

Ans.

Ans.

Ans.
(c)

C.I.	f	$' x$ ' mid values
$20-30$	10	25
$30-40$	6	35
$40 — 50$	8	45
$50-60$	12	$55=A$
$60-70$	5	65
$70-80$	9	75
	$\sum f=50$	

Here,

$$
\begin{aligned}
\mathrm{A} & =\text { assumed mean }=55 \\
h & =10 \\
\bar{X} & =\mathrm{A}+\frac{\sum f u}{\sum f} h
\end{aligned}
$$

Solution 10.

(a) Steps of construction:
(i) 1. Draw a line $\mathrm{BC}=6 \mathrm{~cm}$
2. From B, make an angle of 120°
3. From point B, draw an arc of 3.5 cm and mark this point as A.
4. Join AC.
(ii) 1. Draw a perpendicular bisector on $B C$ and mark the intersection point on BC as M .
2. Taking M as centre and BM as radius, draw a circle.
3. Draw the bisector of $\angle A B C$ such that it touches the circle at point P .
4. Join PC.

P is the required point.
(iii)

$$
\angle \mathrm{BCP}=30^{\circ}
$$

(b)

Marks C.I.	No. of Students f	c.f.
$0 — 10$	5	5
$10 — 20$	9	14
$20 — 30$	16	30
$30 — 40$	22	52
$40 — 50$	26	78
$50-60$	18	96
$60 — 70$	11	107
$70-80$	6	113
$80-90$	4	117
$90-100$	3	120

(i) Using graph, $n=120$ (even)

$$
\begin{aligned}
\therefore \quad \text { Median } & =\left(\frac{120}{2}\right)^{\text {th }} \text { observation } \\
& =60^{\text {th }} \text { observation } \\
& =43 \text { (approx.) }
\end{aligned}
$$

Ans.

(ii) Number of students who obtained more than 75% marks in the test

$$
=120-110=10 \quad \text { Ans. }
$$

(iii) Number of students who did not pass the test $=52$

Ans.

Solution 11.

(a) Given, $\mathrm{AP}: \mathrm{PB}=2: 3$

Let $\mathrm{A}(x, 0)$ and $\mathrm{B}(0, y)$
\therefore By section formula,

$$
\frac{m_{1} \times x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}=x
$$

Here,

$$
\begin{aligned}
m & =2, m_{2}=3 \\
x_{1} & =0, x_{2}=x \\
x & =-3
\end{aligned}
$$

$$
\Rightarrow \quad \frac{2 \times 0+3 \times x}{2+3}=-3
$$

$\Rightarrow \quad 3 x=-15$
and

$$
\begin{aligned}
& x=-5 \\
& y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}
\end{aligned}
$$

ICSE Mathematics-2013
\therefore Coordinates of
and

$$
\begin{aligned}
\mathrm{A} & \equiv(x, 0) \\
\mathrm{B} & \equiv(-5,0, y)
\end{aligned}
$$

(b) Given, $\quad \frac{x^{4}+1}{2 x^{2}}=\frac{17}{8}$

Using componendo and dividendo

$$
\begin{aligned}
\frac{x^{4}+1+2 x^{2}}{x^{4}+1-2 x^{2}} & =\frac{17+8}{17-8} \\
\Rightarrow \quad \frac{\left(x^{2}+1\right)^{2}}{\left(x^{2}-1\right)^{2}} & =\frac{25}{9}
\end{aligned}
$$

$$
\left[\because(a+b)^{2}=a^{2}+2 a b+b^{2}\right.
$$

$$
\text { and } \left.(a-b)^{2}=a^{2}-2 a b-b^{2}\right]
$$

$$
\Rightarrow \quad \frac{x^{2}+1}{x^{2}-1}=\frac{5}{3}
$$

(Taking square root on both the sides)
Again applying componendo and dividendo

$$
\frac{x^{2}+1+x^{2}-1}{x^{2}+1-x^{2}+1}=\frac{5+3}{5-3}
$$

$$
\begin{aligned}
& \text { Here, } \quad m_{1}=2, m_{2}=3 \\
& y_{1}=y, y_{2}=0 \\
& y=4 \\
& \Rightarrow \quad \frac{2 \times y+3 \times 0}{2+3}=4 \\
& \Rightarrow \quad 2 y=20 \\
& \Rightarrow \quad y=10 \\
& \underset{(x, 0)}{A} \begin{array}{lll}
2 & P & (-3,4) \\
\hline
\end{array} \quad B
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \frac{2 x^{2}}{2} & =\frac{8}{2} \\
\Rightarrow & x^{2} & =4 \\
\Rightarrow & x & = \pm 2
\end{aligned}
$$

\therefore Value of x is $2,-2$.
Ans.
(c) Let, the original cost of each book be ₹ x.
\therefore Number of books purchased for $₹ 960=\frac{960}{x}$
Now, if cost of each book $=₹(x-8)$
\therefore Number of books purchased for ₹ 960

$$
=\frac{960}{x-8}
$$

According to the question

$$
\begin{aligned}
& & \frac{960}{x}+4 & =\frac{960}{x-8} \\
& & & \frac{960}{(x-8)}-\frac{960}{x}
\end{aligned}=4 \begin{aligned}
& \\
& \Rightarrow
\end{aligned}
$$

As cost can't be negative
$\therefore \quad x=₹ 48$.
\therefore Cost of each book is ₹ 48 .
Ans.

QUESTIONS

SECTION—A (40 Marks)

(Attempt all questions from this Section)

Question 1.

(a) If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, find $A^{2}-5 A+7 I$.
(b) The monthly pocket money of Ravi and Sanjeev are in the ratio 5:7. Their expenditures are in the ratio 3 : 5. If each saves ₹ 80 every month, find their monthly pocket money.
[3]
(c) Using the Remainder Theorem, factorise completely the following polynomial.

$$
\begin{equation*}
3 x^{3}+2 x^{2}-19 x+6 \tag{4}
\end{equation*}
$$

Question 2.
(a) On what sum of money will the difference between the compound interest and simple interest for 2 years be equal to ₹ 25 if the rate of interest charged for both is 5% p.a. ?**
(b) $A B C$ is an isosceles right angled triangle with $\angle A B C=90^{\circ}$. A semi-circle is drawn with $A C$ as the diameter. If $A B=B C=7 \mathrm{~cm}$, find the area of the shaded region. ${ }^{* *}\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$

(c) Given a line segment $A B$ joining the points $A(-4,6)$ and $B(8,-3)$. Find :
(i) the ratio in which $A B$ is divided by the Y -axis.
(ii) find the coordinates of the point of intersection.
(iii) the length of $A B$.**

Question 3.
(a) In the given figure O is the centre of the circle and $A B$ is a tangent at B. If $A B=15 \mathrm{~cm}$ and $A C=7.5 \mathrm{~cm}$. Calculate the radius of the circle.

[^5]
(b) Evaluate without using trigonometric tables :** $\cos ^{2} 26^{\circ}+\cos 64^{\circ} \sin 26^{\circ}+\frac{\tan 36^{\circ}}{\cot 54^{\circ}}$
(c) Marks obtained by 40 students in a short assessment is given below, where a and b are two missing data.

Marks	5	6	7	8	9
No. of Students	6	a	16	13	b

If the mean of the distribution is 7.2 , find a and b. [4] Question 4.
(a) Kiran deposited ₹ 200 per month for 36 months in a bank's recurring deposit account. If the bank pays interest at the rate of 11% per annum, find the amount she gets on maturity.
(b) Two coins are tossed once. Find the probability of getting:
(i) 2 heads,
(ii) at least 1 tail.
(c) Using graph paper and taking $1 \mathrm{~cm}=1$ unit along both X -axis and Y -axis.
(i) Plot the points $A(-4,4)$ and $B(2,2)$.
(ii) Reflect A and B in the origin to get the images A^{\prime} and B^{\prime} respectively.
(iii) Write down the coordinates of A^{\prime} and B^{\prime}.
(iv) Give the geometrical name for the figure $A B A^{\prime} B^{\prime}$.
(v) Draw and name its lines of symmetry.**

SECTION-B (40 Marks)

(Attempt any four questions from this Section)

Question 5.

(a) In the given figure, $A B$ is the diameter of a circle with centre O.

$\angle B C D=130^{\circ}$. Find :
(i) $\angle D A B$
(ii) $\angle D B A$
(b) Given $\left[\begin{array}{rr}2 & 1 \\ -3 & 4\end{array}\right] X=\left[\begin{array}{l}7 \\ 6\end{array}\right]$. Write:
(i) the order of the matrix X .
(ii) the matrix X.
(c) A page from the Savings Bank Account of Mr. Prateek is given below:

Date	Particulars	Withdrawal (in ₹)	Deposit (in ₹)	Balances (in ₹)
January $1^{\text {st }} 2006$	B/F	-	-	1,270
January $7^{\text {th }} 2006$	By Cheque	-	2,310	3,580
March 9 ${ }^{\text {th }} 2006$	To Self	2,000	-	1,580
March $26^{\text {th }} 2006$	By Cash	-	6,200	7,780
June 10 ${ }^{\text {th }} 2006$	To Cheque	4,500	-	3,280
July 15 ${ }^{\text {th }} 2006$	By Clearing	-	2,630	5,910
October 18 ${ }^{\text {th }} 2006$	To Cheque	530	-	5,380
October $27^{\text {th }} 2006$	To Self	2,690	-	2,690
November $3^{\text {rd }} 2006$	By Cash	-	1,500	4,190
December $6^{\text {th }} 2006$	To Cheque	950	-	3,240
December $23{ }^{\text {rd }} 2006$	By Transfer	-	2,920	6,160

If he receives $₹ 198$ as interest on $1^{\text {st }}$ January, 2007, find the rate of interest paid by the bank.**
Question 6.
(a) The printed price of an article is ₹ 60,000 . The wholesaler allows a discount of 20% to the shopkeeper. The shopkeeper sells the article to the customer at the printed price. Sales tax (under VAT) is charged at the rate of 6% at every stage. Find :**
(i) the cost to the shopkeeper inclusive of tax.
(ii) VAT paid by the shopkeeper to the Government.
(iii) the cost to the customer inclusive of tax.
(b) Solve the following inequation and represent the solution set on the number line :

$$
\begin{equation*}
4 x-19<\frac{3 x}{5}-2 \leq \frac{-2}{5}+x, x \in R \tag{3}
\end{equation*}
$$

Where R is a set of real numbers.
(c) Without solving the following quadratic equation, find the value of ' m ' for which the given equation has real and equal roots.

$$
\begin{equation*}
x^{2}+2(m-l) x+(m+5)=0 \tag{4}
\end{equation*}
$$

Question 7.
(a) A hollow sphere of internal and external radii 6 cm and 8 cm respectively is melted and recast into small cones of base radius 2 cm and height 8 cm . Find the number of cones.
** Answer is not given due to change in the present syllabus.
(b) Solve the following equation and give your answer correct to 3 significant figures :

$$
\begin{equation*}
5 x^{2}-3 x-4=0 \tag{3}
\end{equation*}
$$

(c) As observed from the top of a 80 m tall lighthouse, the angles of depression of two ships on the same side of the light house in horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest metre.

Question 8.
(a) A man invests ₹ 9600 on ₹ 100 shares at ₹ 80 . If the company pays him 18% dividend find:
(i) the number of shares he buys.
(ii) his total dividend.
(iii) his percentage return on the shares.
(b) In the given figure $\triangle A B C$ and $\triangle A M P$ are right angled at B and M respectively.
Given $A C=10 \mathrm{~cm}, A P=15 \mathrm{~cm}$ and $P M=12 \mathrm{~cm}$.
(i) Prove $\triangle A B C \sim \triangle A M P$.
(ii) Find $A B$ and $B C$.

Draw an ogive for the given distribution taking $2 \mathrm{~cm}=5 \mathrm{~cm}$ of height on one axis and 2 cm $=20$ students on the other axis. Using the graph, determine :
(i) The median height.
(ii) The interquartile range.
(iii) The number of students whose height is above 172 cm.

Question 11.

(a) In triangle $P Q R, P Q=24 \mathrm{~cm}, Q R=7 \mathrm{~cm}$ and $\angle P Q R=90^{\circ}$. Find the radius of the inscribed circle.
[3]

(b) Find the mode and median of the following frequency distribution:

x	10	11	12	13	14	15
f	1	4	7	5	9	3

(c) The line through $P(5,3)$ intersects Y-axis at Q.

(i) Write the slope of the line.
(ii) Write the equation of the line.
(iii) Find the coordinates of Q.

ANswers

SECTION—A

Solution 1.
(a)

$$
\begin{aligned}
\mathrm{A}^{2} & =\mathrm{A} \cdot \mathrm{~A} \\
& =\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right] \\
& =\left[\begin{array}{rr}
9-1 & 3+2 \\
-3-2 & -1+4
\end{array}\right] \\
\text { Now, } \quad & =\left[\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A^{2}-5 A+7 I & =\left[\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array}\right]-5\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]+7\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array}\right]-\left[\begin{array}{rr}
15 & 5 \\
-5 & 10
\end{array}\right]+\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right] \\
& =\left[\begin{array}{rr}
8-15 & 5-5 \\
-5+5 & 3-10
\end{array}\right]+\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right] \\
& =\left[\begin{array}{cc}
-7 & 0 \\
0 & -7
\end{array}\right]+\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0
\end{aligned}
$$

Ans.

ICSE Mathematics-2012
(b) Let, the monthly pocket money of Ravi and Sanjeev be $5 x$ and $7 x$ respectively and their expenditures be $3 y$ and $5 y$.
So,

$$
\begin{equation*}
5 x-3 y=80 \tag{i}
\end{equation*}
$$

And, $\quad 7 x-5 y=80$
Multiplying equation (i) by 5 and equation (ii) by 3 , we get

$$
\begin{align*}
& 25 x-15 y=400 \tag{iii}\\
& 21 x-15 y=240 \tag{iv}
\end{align*}
$$

Sub.

$$
\begin{array}{lrl}
\text { We have, } & x & =\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \\
\Rightarrow & 0 & =\frac{k \times 8+1 \times(-4)}{k+1} \\
\Rightarrow & 8 k-4 & =0 \tag{ii}\\
\Rightarrow & 8 k & =4 \\
\Rightarrow & & k=\frac{4}{8}=\frac{1}{2}
\end{array}
$$

So, required ratio is $1: 2$
Ans.
(ii) Now,

$$
\begin{aligned}
y & =\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \\
y & =\frac{1 \times(-3)+2 \times 6}{1+2} \\
& =\frac{-3+12}{3}=3
\end{aligned}
$$

So, coordinates of point of intersection on Y -axis are $(0,3)$.

Ans.
(c) Let, $\quad \mathrm{P}(x)=3 x^{3}+2 x^{2}-19 x+6$

Putting $x=2, \quad \mathrm{P}(2)=3 \times 2^{3}+2 \times 2^{2}-19 \times 2+6$

$$
\begin{aligned}
& =24+8-38+6 \\
& =38-38=0
\end{aligned}
$$

$\Rightarrow(x-2)$ is a factor of $\mathrm{P}(x)$

Now,

$$
x-2) \frac{3 x^{2}+8 x-3}{3 x^{3}+2 x^{2}-19 x+6}
$$

Ans.

Solution 3.

(a) Given, $\mathrm{AB}=15 \mathrm{~cm}, \mathrm{AC}=7.5 \mathrm{~cm}$.

If a chord and a tangent intersect externally then product of segments of the chord is equal to square of the length of the tangent.

$$
\begin{array}{rlrl}
& & \mathrm{AB}^{2}=\mathrm{AC} \times \mathrm{AD} \\
\Rightarrow & & 15^{2} & =7.5 \times \mathrm{AD} \\
\Rightarrow & & \mathrm{AD} & =\frac{225}{7.5}=30 \\
\Rightarrow & & \mathrm{CD} & =\mathrm{AD}-\mathrm{AC} \\
& & & =30-7.5=22.5
\end{array}
$$

$$
\text { Radius }=\frac{1}{2} \times \mathrm{CD}
$$

$$
\text { Radius }=\frac{1}{2} \times 22.5
$$

Radius $=11 \cdot 25 \mathrm{~cm}$		Ans.
Marks (x) No. of students (f) $f \cdot x$ 5 6 30 6 a $6 a$ 7 16 112 8 13 104 9 b $9 b$ $\Sigma f=35+a+b$ $\Sigma f x=246+6 a$ 		

Solution 2.
(c)

$$
\begin{array}{cccc}
& \mathrm{k} & \mathrm{P} & 1 \tag{i}\\
\mathrm{~A}(-4,6) & \mathrm{P}(0, \mathrm{y}) & \mathrm{B}(8,-3)
\end{array}
$$

Let the line segment $A B$ is divided by Y-axis at point P in the ratio $k: 1$.
(i) Since P lies on Y -axis so $x=0$, then coordinates of P are $(0, y)$.

$$
\begin{aligned}
35+a+b & =40 \\
a+b & =5
\end{aligned}
$$

And,
Now,

$$
\bar{X}=\frac{\Sigma f x}{\Sigma f}
$$

$$
\begin{aligned}
7 \cdot 2 & =\frac{246+6 a+9 b}{40} \\
\Rightarrow \quad 6 a+9 b+246 & =288
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & 6 a+9 b=42 \\
\Rightarrow & 2 a+3 b=14 \tag{ii}
\end{array}
$$

Multiplying by 2 in equation (i) and solving with equation (ii)

$$
\begin{aligned}
& 2 a+2 b=10 \\
& 2 a+3 b=14
\end{aligned}
$$

On subtracting

$$
(-) \quad(-) \quad(-)
$$

$$
-b=-4
$$

$$
\Rightarrow \quad b=4
$$

Putting the value of b in equation (i), we get

$$
\begin{array}{rlrl}
& & a+4 & =5 \\
\Rightarrow & a & =1 \\
\therefore & a & =1, b=4
\end{array}
$$

Solution 4.
(a) Given, $\mathrm{P}=₹ 200, n=36$ months, $\mathrm{R}=11 \%$

$$
\begin{aligned}
\text { Interest } & =\frac{P \times n(n+1) \times R}{2 \times 12 \times 100} \\
& =\frac{200 \times 36 \times 37 \times 11}{2,400} \\
& =3 \times 37 \times 11=₹ 1,221
\end{aligned}
$$

Sum deposited $=n \times \mathrm{P}$

$$
=36 \times 200=₹ 7,200
$$

$\Rightarrow \quad$ Amount $=n \mathrm{P}+\mathrm{I}$

$$
\begin{aligned}
& =7,200+1,221 \\
& =₹ 8,421
\end{aligned}
$$

\therefore Total amount she will get is ₹ 8,421 .
Ans.
(b) If two coins are tossed once, then total outcomes

$$
\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}
$$

\Rightarrow

$$
n(\mathrm{~S})=4
$$

(i) Let E be the event of getting two heads

$$
\mathrm{E}=\{\mathrm{HH}\}
$$

\therefore Favourable outcomes

$$
n(\mathrm{E})=1
$$

Required probability

$$
\begin{aligned}
\mathrm{P}(\mathrm{E}) & =\frac{n(\mathrm{E})}{n(\mathrm{~S})} \\
& =\frac{1}{4}
\end{aligned}
$$

Ans.
(ii) Let F be the event of getting atleast one tail

$$
(\mathrm{F})=\{\mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}
$$

\therefore Favourable outcomes

$$
n(\mathrm{~F})=3
$$

Required probability

$$
\mathrm{P}(\mathrm{~F})=\frac{n(\mathrm{~F})}{n(\mathrm{~S})}=\frac{3}{4}
$$

(c) (i), (ii) on graph
(iii) $\mathrm{A}^{\prime}(4,-4)$
$\mathrm{B}^{\prime}(-2,-2)$
(iv) Rhombus

SECTION—B

Solution 5.
(a) (i) $\angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$
(Opp. angles of a cyclic quadrilateral)

$\Rightarrow \quad \angle \mathrm{DAB}+130^{\circ}=180^{\circ}$
($\angle \mathrm{BCD}=130^{\circ}$ given)
$\Rightarrow \quad \angle \mathrm{DAB}=180^{\circ}-130^{\circ}$
$\Rightarrow \quad \angle \mathrm{DAB}=50^{\circ} \quad$ Ans.
(ii) $\quad \angle \mathrm{ADB}=90^{\circ}$
(angle in semi-circle)
In $\Delta \mathrm{ADB}$,

$$
\angle \mathrm{DAB}+\angle \mathrm{ADB}+\angle \mathrm{DBA}=180^{\circ}
$$

(Angle sum property)
$\Rightarrow 50^{\circ}+90^{\circ}+\angle \mathrm{DBA}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{DBA}=180^{\circ}-140^{\circ}$
$\Rightarrow \quad \angle \mathrm{DBA}=40^{\circ}$
Ans.
(b) (i)

$$
\left[\begin{array}{rr}
2 & 1 \\
-3 & 4
\end{array}\right]_{2 \times 2} X=\left[\begin{array}{l}
7 \\
6
\end{array}\right]_{2 \times 1}
$$

According to the given condition, the order of matrix X will be 2×1.

Ans.

ICSE Mathematics-2012
$\begin{aligned} & \text { (ii) Let } & \text { Let } & \text { X }\end{aligned}$ $\begin{array}{rlrl} & =\left[\begin{array}{l}a \\ b\end{array}\right] \\ & \text { so } & {\left[\begin{array}{cc}2 & 1 \\ -3 & 4\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]} & =\left[\begin{array}{l}7 \\ 6\end{array}\right] \\ \Rightarrow & {\left[\begin{array}{c}2 a+b \\ -3 a+4 b\end{array}\right]} & =\left[\begin{array}{l}7 \\ 6\end{array}\right] \\ \Rightarrow & & 2 a+b & =7 \\ \Rightarrow & -3 a+4 b & =6\end{array}$
Multiplying by 4 in equation (i) and solving with equation (ii)

$$
\begin{aligned}
8 a+4 b & =28 \\
-3 a+4 b & =6
\end{aligned}
$$

On subtracting (+) (-) (-)

$$
\begin{array}{rlrl}
& & 11 a & =22 \\
\therefore & a & =2
\end{array}
$$

Putting the value of a in equation (i), we get

$$
\begin{array}{rlrl}
& & 2 \times 2+b & =7 \\
\therefore & & b & =7-4=3 \\
\Rightarrow & X & =\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\end{array}
$$

Solution 6.
(b)

$$
\begin{array}{rl|c}
& 4 x-19<\frac{3 x}{5}-2 \leq \frac{-2}{5}, x \in \mathrm{R} \\
\Rightarrow & 4 x-19<\frac{3 x}{5}-2 & \frac{3 x}{5}-2 \leq \frac{-2}{5}+x \\
& 4 x-\frac{3 x}{5}<-2+19 & \frac{3 x}{5}-x \leq \frac{-2}{5}+2 \\
\Rightarrow & \frac{17 x}{5}<17 & -2 x \leq 8 \\
\Rightarrow & x<5 & 2 x \geq-8 \\
\Rightarrow & -4 \leq x<5 & x \geq-4
\end{array}
$$

Solution Set : $\{x:-4 \leq x<5, x \in \mathrm{R}\}$

(c) Given quadratic equation

$$
x^{2}+2(m-1) x+(m+5)=0
$$

On comparing with $a x^{2}+b x+c=0$

$$
a=1, b=2(m-1), c=(m+5)
$$

Since equation has real and equal roots

$$
\begin{array}{rr}
\therefore & \mathrm{D}=0 \\
\Rightarrow & b^{2}-4 a c=0 \\
\Rightarrow & {[2(m-1)]^{2}-4 \times 1 \times(m+5)=0} \\
\Rightarrow & 4(m-1)^{2}-4(m+5)=0
\end{array}
$$

$$
\begin{array}{lr}
\Rightarrow & 4\left[(m-1)^{2}-(m+5)\right] \\
\Rightarrow & 4\left[m^{2}-2 m+1-m-5\right]
\end{array}=0
$$

$$
\begin{array}{rlrlrl}
& & m+1 & =0, & m-4 & =0 \\
\Rightarrow & & m & =-1 \quad \text { and } \quad m=4 \\
\therefore & & m & =-1,4
\end{array}
$$

Solution 7.
(a) Volume of metal in hollow sphere

$$
\begin{aligned}
& =\frac{4}{3} \pi\left(8^{3}-6^{3}\right) \\
& =\frac{1184}{3} \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of metal in one cone

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi \times 2^{2} \times 8 \\
& =\frac{32}{3} \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Number of cones $=\frac{\text { Volume of metal in sphere }}{\text { Volume of metal in one cone }}$

$$
\begin{aligned}
& =\frac{\frac{1184}{3} \pi}{\frac{32}{3} \pi} \\
& =\frac{1184}{32}=37
\end{aligned}
$$

(b) Given equation is, $5 x^{2}-3 x-4=0$

On comparing with $a x^{2}+b x+c=0$, we get

$$
\begin{aligned}
& a=5, b=-3, c=-4 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \Rightarrow \quad x=\frac{3 \pm \sqrt{9-4 \times 5(-4)}}{2 \times 5} \\
& \Rightarrow \quad x=\frac{3 \pm \sqrt{9+80}}{10}=\frac{3 \pm \sqrt{89}}{10} \\
& x=\frac{3 \pm 9 \cdot 434}{10} \\
& \Rightarrow \quad x=\frac{3+9 \cdot 434}{10} \\
& \text { or } \quad x=\frac{3-9.434}{10} \\
& x=\frac{12 \cdot 434}{10}
\end{aligned}
$$

or

$$
\begin{aligned}
& x=\frac{-6.434}{10} \\
& x=1.243
\end{aligned}
$$

$$
\text { or } \quad x=-0.643
$$

at C and D .

In $\Delta \mathrm{ABC}$,

$$
\begin{aligned}
\tan 40^{\circ}= & \frac{\mathrm{AB}}{\mathrm{BC}} \\
\Rightarrow \quad \mathrm{BC} & =\frac{\mathrm{AB}}{\tan 40^{\circ}} \\
\mathrm{BC} & =\frac{80}{0.8391} \\
& \quad \text { (using trigonometric table) } \\
= & 95.34 \mathrm{~m}
\end{aligned}
$$

In $\Delta \mathrm{ABD}$,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BD}} \\
\Rightarrow \quad \mathrm{BD} & =\frac{\mathrm{AB}}{\tan 30^{\circ}}=\frac{80}{0.5774} \\
& =138.55 \mathrm{~m}
\end{aligned}
$$

Distance between two ships

$$
\begin{aligned}
\mathrm{DC} & =\mathrm{BD}-\mathrm{BC} \\
& =138 \cdot 55-95 \cdot 34 \\
& =43 \cdot 21 \mathrm{~m}=43 \mathrm{~m} \text { (approx.) }
\end{aligned}
$$

Ans.
Solution 8.
(a) (i) Number of shares $=\frac{\text { Investment }}{\text { M.V. }}$

$$
=\frac{9,600}{80}=120
$$

(ii) Total dividend $=\frac{18}{100} \times 100 \times 120$

$$
=₹ 2,160
$$

Ans.
(c) Given,

$$
\begin{array}{ll}
\Rightarrow & \frac{\mathrm{BC}}{\mathrm{PM}}=\frac{\mathrm{AC}}{\mathrm{AP}} \\
\Rightarrow & \frac{\mathrm{BC}}{12}=\frac{10}{15} \\
\Rightarrow & \mathrm{BC}=\frac{10}{15} \times 12 \\
& \mathrm{BC}=8 \mathrm{~cm}
\end{array}
$$

(90° each)
(Common)
$\therefore \quad \Delta \mathrm{ABC} \sim \Delta \mathrm{AMP}$ (By AA similarity)
Hence Proved.
(ii) Given, $\mathrm{AC}=10 \mathrm{~cm}, \mathrm{AP}=15 \mathrm{~cm}, \mathrm{PM}=12 \mathrm{~cm}$.

$$
\because \quad \Delta \mathrm{ABC} \sim \Delta \mathrm{AMP}
$$ in proportion)

Ans.
Ans.

Ans.
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{AM}}=\frac{\mathrm{BC}}{\mathrm{PM}}=\frac{\mathrm{AC}}{\mathrm{AP}}$
(corresponding sides of similar triangles are

In $\triangle A B C$, right angled at B

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

(Pythagoras theorem)
Now,

$$
\begin{aligned}
\mathrm{AB}^{2} & =\mathrm{AC}^{2}-\mathrm{BC}^{2} \\
& =10^{2}-8^{2}=100-64=36 \\
\mathrm{AB} & =6 \mathrm{~cm}
\end{aligned}
$$

$$
x=\frac{\sqrt{a+1}+\sqrt{a-1}}{\sqrt{a+1}-\sqrt{a-1}}
$$

$$
\Rightarrow \quad \frac{x}{1}=\frac{\sqrt{a+1}+\sqrt{a-1}}{\sqrt{a+1}-\sqrt{a-1}}
$$

Using componendo and dividendo

$$
\begin{array}{ll}
\Rightarrow & \frac{x+1}{x-1}=\frac{\sqrt{a+1}+\sqrt{a-1}+\sqrt{a+1}-\sqrt{a-1}}{\sqrt{a+1}+\sqrt{a-1}-\sqrt{a+1}+\sqrt{a-1}} \\
\Rightarrow & \frac{x+1}{x-1}=\frac{2 \sqrt{a+1}}{2 \sqrt{a-1}} \\
\Rightarrow & \frac{(x+1)^{2}}{(x-1)^{2}}=\frac{a+1}{a-1}
\end{array}
$$

(Squaring both side)

$$
\Rightarrow \quad \frac{x^{2}+2 x+1}{x^{2}-2 x+1}=\frac{a+1}{a-1}
$$

Again using componendo and dividendo

$$
\frac{\left(x^{2}+2 x+1\right)+\left(x^{2}-2 x+1\right)}{\left(x^{2}+2 x+1\right)-\left(x^{2}-2 x+1\right)}=\frac{(a+1)+(a-1)}{(a+1)-(a-1)}
$$

ICSE Mathematics-2012

$$
\begin{array}{cc}
\Rightarrow & \frac{x^{2}+2 x+1+x^{2}-2 x+1}{x^{2}+2 x+1-x^{2}+2 x-1}=\frac{a+1+a-1}{a+1-a+1} \\
\Rightarrow & \frac{2 x^{2}+2}{4 x}=\frac{2 a}{2} \\
\Rightarrow & \frac{x^{2}+1}{2 x}=\frac{a}{1} \\
\Rightarrow & x^{2}+1=2 a x \\
\Rightarrow & x^{2}-2 a x+1=0 .
\end{array}
$$

$=\frac{1+\cos \theta}{1-\cos \theta}=$ R.H.S. \quad Hence Proved.
(c) Let the original speed of the car be $x \mathrm{~km} / \mathrm{h}$.

So, time taken by car $=\frac{400}{x} \mathrm{hrs}$

$$
\text { When, } \quad \text { Speed }=(x+12) \mathrm{km} / \mathrm{h}
$$

Time taken by car $=\frac{400}{x+12} \mathrm{hrs}$

Solution 9.
(a) Given, $\mathrm{A}(-2,3), \mathrm{B}(4, b)$

$$
\text { Slope of } \mathrm{AB}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$\Rightarrow \quad m_{1}=\frac{b-3}{4+2}$
$\Rightarrow \quad m_{1}=\frac{b-3}{6}$
And $\quad 2 x-4 y=5$
$\Rightarrow \quad 4 y=2 x-5$
$\Rightarrow \quad y=\frac{1}{2} x-\frac{5}{4}$
On comparing with $y=m x+c$

$$
\text { Slope }\left(m_{2}\right)=\frac{1}{2}
$$

Since both lines are perpendicular to each other

$$
\therefore \quad \begin{aligned}
m_{1} \times m_{2} & =-1 \\
\frac{b-3}{6} \times \frac{1}{2} & =-1 \\
b-3 & =-12 \\
b & =-9
\end{aligned}
$$

Ans.
(b)

$$
\text { L.H.S. }=\frac{\tan ^{2} \theta}{(\sec \theta-1)^{2}}
$$

$$
\begin{aligned}
& =\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\left(\frac{1}{\cos \theta}-1\right)^{2}} \\
& \quad\left(\because \tan \theta=\frac{\sin \theta}{\cos \theta} ; \sec \theta=\frac{1}{\cos \theta}\right) \\
& =\frac{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\left(1-\cos ^{2} \theta\right)^{2}}{\cos ^{2} \theta}}=\frac{\sin ^{2} \theta}{(1-\cos \theta)^{2}} \\
& =\frac{1-\cos ^{2} \theta}{(1-\cos \theta)^{2}} \quad\left(\because \sin ^{2} \theta=1-\cos ^{2} \theta\right) \\
& =\frac{(1-\cos \theta)(1+\cos \theta)}{(1-\cos \theta)^{2}} \\
& {\left[\because a^{2}-b^{2}=(a-b)(a+b)\right]}
\end{aligned}
$$

According to the question,

$$
\frac{400}{x}-\frac{400}{x+12}=1 \text { hour }+40 \text { minutes }
$$

$$
\left[\left(1+\frac{40}{60}\right) \text { hour }\right]
$$

$$
400\left[\frac{(x+12-x)}{x(x+12)}\right]=1+\frac{2}{3}
$$

$$
\Rightarrow \quad \frac{4800}{x^{2}+12 x}=\frac{5}{3}
$$

$$
\Rightarrow \quad 5\left(x^{2}+12 x\right)=14,400
$$

$$
\Rightarrow \quad x^{2}+12 x-2,880=0
$$

$$
\Rightarrow \quad x^{2}+60 x-48 x-2,880=0
$$

$$
\Rightarrow x(x+60)-48(x+60)=0
$$

$$
\Rightarrow \quad(x+60)(x-48)=0
$$

Either,

$$
x+60=0
$$

$$
x=-60
$$

(Neglect, speed can't be negative)
or

$$
\begin{aligned}
x-48 & =0 \\
x & =48
\end{aligned}
$$

Hence, original speed of the car $=48 \mathrm{~km} / \mathrm{h}$
Ans.

Solution 10.

(a) (i) Steps of construction:

1. Draw a line segment $\mathrm{BC}=6 \mathrm{~cm}$.
2. Construct $\angle \mathrm{XBC}=120^{\circ}$.
3. From B, cut an arc of 5.5 cm on side $X B$, and mark this point as A.
4. Join A to C.
5. Construct perpendicular bisectors of $A B$ and BC, intersecting at O. Join AO.
6. Taking O as centre and OA as radius, draw a circle, passing through A, B and C.
(ii) 1. Extend the right bisector of $B C$, intersecting the circle at D.
7. Join A to D and C to D.

$\therefore \quad \mathrm{ABCD}$ is required cyclic quadrilateral.
(b)

Height (in cm)	No. of Students (f)	$c f$
$140-145$	12	12
$145-150$	20	32
$150-155$	30	62
$155-160$	38	100
$160-165$	24	124
$165-170$	16	140
$170-175$	12	152
$175-180$	8	160
	$\sum f=160$	

We have to plot $(145,12),(150,32),(155,62)$,
$(160,100),(165,124),(170,140),(175,152)$ and $(180,160)$.

(i) Using graph,

$$
\begin{aligned}
\mathrm{N} & =160 \text { (even) } \\
\therefore \quad \text { Median } & =\left(\frac{160}{2}\right)^{\text {th }} \text { term }=80^{\text {th }} \text { term }
\end{aligned}
$$

Now, we shall construct a horizontal line at cumulative frequency $=80$:
Intersecting the ogive at $(157 \cdot 5,80)$,
Hence, median height $=157.5 \mathrm{~cm}$.
Ans.
(ii) Lower quartile $\left(\mathrm{Q}_{1}\right)=\left(\frac{\mathrm{N}}{4}\right)^{\text {th }}$ term

$$
\begin{aligned}
& =\left(\frac{160}{4}\right)^{\text {th }} \text { term } \\
& =40^{\text {th }} \text { term }=151 \cdot 25
\end{aligned}
$$

Upper quartile $\left(Q_{3}\right)=\left(\frac{3 N}{4}\right)^{\text {th }}$ term

$$
\begin{aligned}
& =\left(\frac{3 \times 160}{4}\right)^{\text {th }} \text { term } \\
& =120^{\text {th }} \text { term }=164.25
\end{aligned}
$$

\therefore Interquartile range $=\mathrm{Q}_{3}-\mathrm{Q}_{1}$

$$
\begin{aligned}
& =164 \cdot 25-151 \cdot 25 \\
& =13
\end{aligned}
$$

Ans.
(iii) The number of students whose height is above 172 cm

$$
=160-144=16 \quad \text { Ans. }
$$

Solution 11.
(a) Given, $\mathrm{PQ}=24 \mathrm{~cm}, \mathrm{QR}=7 \mathrm{~cm}$, and $\angle \mathrm{PQR}=90^{\circ}$.

Construction : Draw $\mathrm{OM} \perp \mathrm{QR}$ and $\mathrm{ON} \perp \mathrm{PQ}$
As, $\mathrm{OM} \perp \mathrm{QR}$ and $\mathrm{ON} \perp \mathrm{PQ}$:
(Tangents and radius are perpendicular to each other)
and $\mathrm{OM}=\mathrm{ON}$
(Radius)
and $\mathrm{QM}=\mathrm{QN}$ (Tangents from an external point)
$\therefore \quad \mathrm{QMON}$ is a square.

$\Rightarrow \quad \mathrm{QM}=\mathrm{OM}=\mathrm{ON}=\mathrm{QN}=x \mathrm{~cm}$ (say)
So, $\quad \mathrm{MR}=(7-x) \mathrm{cm}$
$\mathrm{PN}=(24-x) \mathrm{cm}$
$\mathrm{PT}=\mathrm{PN}=24-x$
and,
$\mathrm{MR}=\mathrm{RT}=7-x$
(Tangents from an external point)
$\Rightarrow \quad \mathrm{PR}=\mathrm{PT}+\mathrm{RT}$

$$
=24-x+7-x=31-2 x
$$

ICSE Mathematics-2012
$\mathrm{PQ}=24 \mathrm{~cm}, \mathrm{QR}=7 \mathrm{~cm}, \mathrm{PQR}=90^{\circ}$ (Given)

$$
=15 \text { th value }=13
$$

Now, in $\triangle \mathrm{PQR}$

$$
\therefore \quad \text { Mode }=14 \text { and Median }=13 . \quad \text { Ans. }
$$

$$
\begin{array}{rlrl}
& & \mathrm{PR}^{2} & =\mathrm{PQ}^{2}+\mathrm{QR}^{2} \\
\quad(\text { by Pythagoras theorem) } \\
& & =24^{2}+7^{2} \\
& =576+49=625 \\
\Rightarrow & & \mathrm{PR} & =25 \mathrm{~cm} \\
\Rightarrow & 31-2 x & =25 \\
\Rightarrow & & 2 x & =31-25 \\
\Rightarrow & & 2 x & =6 \\
\Rightarrow & x & =3 \mathrm{~cm}
\end{array}
$$

\therefore Radius of the inscribed circle is 3 cm . Ans.
(b)

\boldsymbol{x}	f	$c f$
10	1	1
11	4	5
12	7	12
13	5	17
14	9	26
15	3	29

$\Rightarrow \quad$ Mode $=14$
Now,

$$
\text { (Since } 9 \text { is highest frequency) }
$$

$$
\mathrm{N}=29 \text { (odd) }
$$

$\therefore \quad$ Median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ value

$$
=\left(\frac{29+1}{2}\right)^{\mathrm{th}} \text { value }
$$

(c) (i)

$$
m=\tan \theta=\tan 45^{\circ}
$$

\therefore Slope of the line

$$
m=1
$$

Ans.
(ii) Equation of line PQ ,
where $x_{1}=5, y_{1}=3$ and $m=1$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 & =1(x-5) \\
y-3 & =x-5 \\
\Rightarrow \quad x-y-2 & =0
\end{aligned}
$$

(iii) Equation of line PQ is

$$
\begin{aligned}
x-y-2 & =0 \\
x & =0
\end{aligned}
$$

[Since, at Q coordinates are $(0, y)$]

$$
\begin{array}{rlrl}
& & -y-2 & =0 \\
\Rightarrow & y & =-2
\end{array}
$$

So, coordinates of $\mathrm{Q}(0,-2)$.
Ans.

Questions

SECTION—A (40 Marks)
 (Attempt all questions from this Section)

Question 1.

(a) Find the value of ' k ' if $(x-2)$ is a factor of:

$$
\begin{equation*}
x^{3}+2 x^{2}-k x+10 \tag{3}
\end{equation*}
$$

Hence, determine whether $(x+5)$ is also a factor.
(b) If $A=\left[\begin{array}{rr}3 & 5 \\ 4 & -2\end{array}\right]$ and $B=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, is the product $A B$ possible? Give a reason. If yes, find $A B$.
(c) Mr. Kumar borrowed ₹ 15,000 for two years. The rate of interest for the two successive years are 8% and 10% respectively. If he repays $₹ 6,200$ at the end of the first year, find the outstanding amount at the end of the second year.**
Question 2.
(a) From a pack of 52 playing cards all cards whose numbers are multiples of 3 are removed. A card is now drawn at random.
What is the probability that the card drawn is :
(i) a face card (King, Jack or Queen)
(ii) an even numbered red card?
(b) Solve the following equation:
$x-\frac{18}{x}=6$. Give your answer correct to two significant figures.
(c) In the given figure O is the centre of the circle. Tangents at A and B meet at C.
If $\angle A C O=30^{\circ}$, find

(i) $\angle B C O$
(ii) $\angle A O B$
(iii) $\angle A P B$
** Answer is not given due to change in the present syllabus.

Question 3.
(a) Ahmed has a recurring deposit account in a bank. He deposits ₹ 2,500 per month for 2 years. If he gets ₹ 66,250 at the time of maturity, find:
(i) The interest paid by the bank
(ii) The rate of interest.
[3]
(b) Calculate the area of the shaded region, if the diameter of the semi-circle is equal to 14 cm . ${ }^{* *}$

$$
\begin{equation*}
\left(\text { Take } \pi=\frac{22}{7}\right) \tag{3}
\end{equation*}
$$

(c) $A B C$ is a triangle and $G(4,3)$ is the centroid of the triangle. If $A=(1,3), \quad B=(4, b)$ and $C=$ $(a, 1)$, find ' a ' and ' b '.
Find the length of side BC.
Question 4.
(a) Solve the following inequation and represent the solution set on the number line $2 x-5 \leq 5 x+4<11$, where $x \in I$, I is a set of integers.
(b) Evaluate without using trigonometric tables.**

$$
\begin{equation*}
2\left(\frac{\tan 35^{\circ}}{\cot 55^{\circ}}\right)^{2}+\left(\frac{\cot 55^{\circ}}{\tan 35^{\circ}}\right)^{2}-3\left(\frac{\sec 40^{\circ}}{\operatorname{cosec} 50^{\circ}}\right) \tag{3}
\end{equation*}
$$

(c) A Mathematics aptitude test of 50 students was recorded as follows :

Marks	No. of Students
$50-60$	4
$60-70$	8
$70-80$	14
$80-90$	19
$90-100$	5

Draw a histogram for the above data using a graph paper and locate the mode.

ICSE Mathematics-2011

SECTION-B (40 Marks)

(Attempt any four questions from this Section)

Question 5.

(a) A manufacturer sells a washing machine to a wholesaler for $₹ 15,000$. The wholesaler sells it to a trader at a profit of ₹ 1,200 and the trader in turn sells it to a consumer at a profit of $₹ 1,800$. If the rate of VAT is 8% find,**
(i) The amount of VAT received by the State Government on the sale of this machine from the manufacturer and the wholesaler.
(ii) The amount that the consumer pays for the machine.
[3]
(b) A solid cone of radius 5 cm and height 8 cm is melted and made into small spheres of radius 0.5 cm . Find the number of spheres formed.
(c) $A B C D$ is a parallelogram where $A(x, y), B(5,8)$, $C(4,7)$ and $D(2,-4)$. Find
(i) Coordinates of A
(ii) Equation of diagonal $B D$.

Question 6.
(a) Use a graph paper to answer the following questions. (Take $1 \mathrm{~cm}=1$ unit on both axes) :
(i) Plot $A(4,4), B(4,-6)$ and $C(8,0)$, the vertices of a triangle $A B C$.
(ii) Reflect $A B C$ on the Y-axis and name it as $A^{\prime} B^{\prime} C^{\prime}$.
(iii) Write the coordinates of the images A^{\prime}, B^{\prime} and C^{\prime}.
(iv) Give a geometrical name for the figure $A A^{\prime} C^{\prime} B^{\prime}$ $B C$.
(v) Identify the line of symmetry of $A A^{\prime} C^{\prime} B^{\prime} B C$.** [5]
(b) Mr. Chaudhary opened a Saving's Bank Account at State Bank of India on 1st April, 2007. The entries of one year as shown in his pass book are given below :**

Date	Particulars	Withdrawals (in ₹)	Deposits (in ₹)	Balance (in ₹)
1st April, 2007	By Cash	-	$8550 \cdot 00$	$8550 \cdot 00$
12th April, 2007	To Self	$1200 \cdot 00$	-	$7350 \cdot 00$
24th April, 2007	By Cash	-	$4550 \cdot 00$	$11900 \cdot 00$
8th July, 2007	By Cheque	-	$1500 \cdot 00$	$13400 \cdot 00$
10th Sept., 2007	By Cheque	-	$3500 \cdot 00$	$16900 \cdot 00$
17th Sept., 2007	To Cheque	$2500 \cdot 00$	-	$14400 \cdot 00$
11th Oct., 2007	By Cash	-	$800 \cdot 00$	$15200 \cdot 00$
6th Jan., 2008	To Self	$2000 \cdot 00$	-	$13200 \cdot 00$
9th March, 2008	By Cheque	-	$950 \cdot 00$	$14150 \cdot 00$

If the bank pays interest at the rate of 5% per annum, find the interest paid on 1st April, 2008. Give your answer correct to the nearest rupee.

Question 7.
(a) Using componendo and dividendo, find the value of x if $\frac{\sqrt{3 x+4}+\sqrt{3 x-5}}{\sqrt{3 x+4}-\sqrt{3 x-5}}=9$.
(b) If $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{rr}4 & -2 \\ -1 & 3\end{array}\right]$ and I is the identity matrix of the same order and A^{t} is the transpose of matrix A, find $A^{t} . B+B I$.
(c) In the following figure $A B C$ is a right angled triangle with $\angle B A C=90^{\circ}$, and $A D \perp B C$.

** Answer is not given due to change in the present syllabus.
(i) Prove $\triangle A D B \sim \triangle C D A$.
(ii) If $B D=18 \mathrm{~cm}, C D=8 \mathrm{~cm}$ find $A D$.
(iii) Find the ratio of the area of $\triangle A D B$ to area of $\triangle C D A$.
Question 8.
(a) (i) Using step-deviation method, calculate the mean marks of the following distribution.
(ii) State the modal class.

Class interval	Frequency
$50-55$	5
$55-60$	20
$60-65$	10
$65-70$	10
$70-75$	9
$75-80$	6
$80-85$	12
$85-90$	8

(b) Marks obtained by 200 students in an examination are given below:

Marks	Frequency
$0-10$	5
$10-20$	11
$20-30$	10
$30-40$	20
$40-50$	28
$50-60$	37
$60-70$	40
$70-80$	29
$80-90$	14
$90-100$	6

Draw an ogive for the given distribution taking 2 cm $=10$ marks on one axis and $2 \mathrm{~cm}=20$ students on the other axis. Using the graph, determine :
(i) The median marks
(ii) The number of students who failed if minimum marks required to pass is 40.
(iii) If scoring 85 and more marks is considered as grade one, find the number of students who secured grade one in the examination.
Question 9.
(a) Mr. Parekh invested $₹ 52,000$ on $₹ 100$ shares at a discount of ₹ 20 paying 8% dividend. At the end of one year he sells the shares at a premium of ₹ 20. Find :
(i) The annual dividend.
(ii) The profit earned including his dividend.
(b) Draw a circle of radius 3.5 cm . Mark a point P outside the circle at a distance of 6 cm from the centre. Construct two tangents from P to the given circle. Measure and write down the length of one tangent. [3]
(c) Prove that
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A) \sec ^{2} A=\tan A$.
Question 10.
(a) 6 is the mean proportion between two numbers x and y and 48 is the third proportional of x and y. Find the numbers.
[3]
(b) In what period of time will $₹ 12,000$ yield ₹ 3,972 as compound interest at 10% per annum, if compounded on an yearly basis ?**
(c) A man observes the angle of elevation of the top of a building to be 30°. He walks towards it in a horizontal line through its base. On covering 60 m the angle of elevation changes to 60°. Find the height of the building correct to the nearest metre.
Question 11.
(a) $A B C$ is a triangle with $A B=10 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C$ $=6 \mathrm{~cm}$ (not drawn to scale). Three circles are drawn touching each other with the vertices as their centres. Find the radii of the three circles.

(b) ₹ 480 is divided equally among ' x ' children. If the number of children were 20 more than each would have got ₹ 12 less. Find ' x '.
(c) Given equation of line L_{1} is $y=4$.
(i) Write the slope of line L_{2} if L_{2} is the bisector of angle O.
(ii) Write the coordinates of point P.
(iii) Find the equation of L_{2}.

ANSWERS

SECTION—A

Solution 1.
(a) Let,

$$
\begin{equation*}
f(x)=x^{3}+2 x^{2}-k x+10 \tag{i}
\end{equation*}
$$

As $(x-2)$ is a factor of $f(x)$
Put $(x-2)=0 \Rightarrow x=2$

$$
\begin{array}{llrl}
\therefore & & f(2) & =(2)^{3}+2(2)^{2}-k(2)+10 \\
\Rightarrow & & 0 & =8+8-2 k+10
\end{array}
$$

[As $(x-2)$ is a factor of $f(x)$

$$
\Rightarrow f(2)=0]
$$

$$
\begin{align*}
\Rightarrow & 2 k & =26 \\
\Rightarrow & k & =\frac{26}{2} \\
& & =13 \\
\therefore & f(x) & =x^{3}+2 x^{2}-13 x+10 \tag{ii}
\end{align*}
$$

To determine whether $(x+5)$ is a factor of $f(x)$ or not

ICSE Mathematics-2011
Put $\quad x+5=0$ i.e., $x=-5$ in (ii)
We get, $f(-5)=(-5)^{3}+2(-5)^{2}-13(-5)+10$
$[k=13]$

$$
=-125+50+65+10=0
$$

$\therefore(x+5)$ is a factor of $f(x)$.
Ans.
(b) $\mathrm{A}=\left[\begin{array}{rr}3 & 5 \\ 4 & -2\end{array}\right]_{2 \times 2}$ and $\mathrm{B}=\left[\begin{array}{l}2 \\ 4\end{array}\right]_{2 \times 1}$

The order of matrix A is 2×2 and matrix B is 2×1.
The product $A B$ is possible as the number of columns in A is equal to the number of rows in B.
Now, $\quad \mathrm{AB}=\left[\begin{array}{rr}3 & 5 \\ 4 & -2\end{array}\right]\left[\begin{array}{l}2 \\ 4\end{array}\right]$

$$
\begin{aligned}
& \mathrm{AB}=\left[\begin{array}{c}
3 \times 2+5 \times 4 \\
4 \times 2+(-2) \times 4
\end{array}\right] \\
& \mathrm{AB}=\left[\begin{array}{c}
26 \\
0
\end{array}\right]
\end{aligned}
$$

Ans.
Solution 2.
(a) The numbers which are multiple of 3 in 52 playing cards are 3, 6 and 9 i.e., 3 cards of each denomination.
\therefore All cards whose numbers are multiples of 3 are

$$
=4 \times 3=12 \text { cards }
$$

Remaining cards $=52-12=40$
[Jack, Queen and King of each denomination]
(i) No. of face cards $=12$

$$
P(\text { face card })=\frac{12}{40}=\frac{3}{10}
$$

Ans.
(ii) Again, even numbered cards are 2, 4, 8 and 10 each of heart (red) and diamond (red).
\therefore Total even numbered red cards $=4 \times 2=8$

$$
P(\text { even numbered red card })=\frac{8}{40}=\frac{1}{5}
$$

Ans.
(b)

$$
\left.\begin{array}{rlrl}
& & x-\frac{18}{x} & =6 \\
\Rightarrow & \frac{x^{2}-18}{x} & =6 \\
\Rightarrow & & x^{2}-18 & =6 x \\
& & \text { or } & x^{2}-6 x-18
\end{array}\right)=0
$$

Since middle term cannot be splitted. So compare with $a x^{2}+b x+c=0$
$a=1, b=-6, c=-18$

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(-18)}}{2 \times 1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{6 \pm \sqrt{36+72}}{2}=\frac{6 \pm \sqrt{108}}{2} \\
& =\frac{6 \pm \sqrt{6 \times 6 \times 3}}{2} \\
& =\frac{6 \pm 6 \sqrt{3}}{2} \\
& =3 \pm 3 \sqrt{3}=3 \pm 3(1 \cdot 732) \\
& =3 \pm 5 \cdot 196 \\
& x=3+5 \cdot 196 \quad \text { or } x=3-5 \cdot 196 \\
& x=8.196 \quad x=-2.196 \\
& x=8 \cdot 2 \text { (} 2 \text { sig. fig.) or } x=-2 \cdot 2 \text { (} 2 \text { sig.fig.) }
\end{aligned}
$$

(c) Given, a circle with centre OCA and CB are tangent to it. $\angle \mathrm{OAC}=\angle \mathrm{OBC}=90^{\circ}$ and $\angle \mathrm{ACO}$ $=30^{\circ}$.

(i) Since, $\triangle \mathrm{ACO} \cong \triangle \mathrm{OBC}=30^{\circ}$
(By SSS)
($\mathrm{AC}=\mathrm{BC}, \mathrm{AO}=\mathrm{OB}$ and OC is common)

$$
\therefore \angle \mathrm{ACO}=\angle \mathrm{BCO}=30^{\circ}
$$

Ans.
(ii)

$$
\begin{aligned}
& \angle \mathrm{OAC}=\angle \mathrm{OBC}=90^{\circ} \\
& \angle \mathrm{ACO}=30^{\circ} \text { (given) } \\
& \angle \mathrm{AOC}=\angle \mathrm{BOC}(\because \triangle \mathrm{ACO} \cong \triangle \mathrm{BOC})
\end{aligned}
$$

$$
\therefore \angle \mathrm{AOC} \angle \mathrm{BOC}=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)
$$

(\because sum of the 3 angles of a Δ is 180°)
(iii)

$$
\begin{aligned}
\angle \mathrm{AOC} & =180^{\circ}-120^{\circ} \\
\angle \mathrm{AOC} & =60^{\circ} \\
\angle \mathrm{AOB} & =\angle \mathrm{AOC}+\angle \mathrm{BOC} \\
& =60^{\circ}+60^{\circ} \\
\angle \mathrm{AOB} & =120^{\circ} \\
\angle \mathrm{APB} & =\frac{1}{2} \angle \mathrm{AOB} \\
& =\frac{120^{\circ}}{2}=60^{\circ}
\end{aligned}
$$

Ans.

Ans.
(\because Angle subtended at the remaining part of the circle is half the angle subtended at the centre.)
Solution 3.
(a) (i) $\mathrm{P}=₹ 2500, n=2$ years, i.e, 24 months

$$
\text { Total deposited amount }=₹ 2500 \times 24
$$

$$
=₹ 60,000
$$

Maturity amount $=₹ 66,250$
\therefore The interest paid by the bank

$$
\begin{aligned}
& =₹(66,250-60,000) \\
& =₹ 6,250
\end{aligned}
$$

$$
\mathrm{I}=\frac{\mathrm{P} \times n(n+1)}{2 \times 12} \times \frac{r}{100}
$$

$$
6250=\frac{2500 \times 24 \times 25}{2 \times 12} \times \frac{r}{100}
$$

\therefore Rate of interest is 10% p.a.
Ans.
(c) Let $\mathrm{A}=(1,3)=\left(x_{1}, y_{1}\right), \mathrm{B}=(4, b)=\left(x_{2}, y_{2}\right)$,

$$
\mathrm{C}=(a, 1)=\left(x_{3}, y_{3}\right) \text { and } \mathrm{G}=(4,3)=(x, y)
$$

Coordinates of centroid

$$
\begin{aligned}
x & =\frac{x_{1}+x_{2}+x_{3}}{3} & & \text { and } & y & =\frac{y_{1}+y_{2}+y_{3}}{3} \\
4 & =\frac{1+4+a}{3} & & \text { and } & 3 & =\frac{3+b+1}{3} \\
12-5 & =a & & \text { and } & 9-4 & =b \\
a & =7 & & \text { and } & b & =5
\end{aligned}
$$

Ans.
Solution 4.
(a)

$$
\left.\begin{array}{rl|r}
2 x-5 & \leq 5 x+4<11, x \in \mathrm{I} \\
2 x-5 & \leq 5 x+4 & 5 x+4 \\
2 x-5 x & \leq 4+5 & 5 x
\end{array}\right)
$$

From (i) and (ii), $-3 \leq x<1 \frac{2}{5}, x \in \mathrm{I}$
\therefore Solution set $=\{-3,-2,-1,0,1\}$
Ans.
(c)

From the graph, the bar with the maximum height is of $80-90$ interval. Join A to C and B to D. They

Ans.

$$
r=\frac{6250}{25 \times 25}=10 \% \text { p.a. }
$$

meet at O . Drop perpendicular from O on X -axis. It meets at 82.5.

$$
\therefore \quad \text { mode }=82.5
$$

Ans.

SECTION—B

Solution 5.
(b) No. of spheres formed

Volume of given cone
$=\overline{\text { Volume of sphere of radius } 0.5 \mathrm{~cm}}$
Volume of cone $=\frac{1}{3} \pi r_{1}^{2} h_{1}$ Volume of sphere $=\frac{4}{3} \pi r_{2}{ }^{3}$

$$
\begin{aligned}
& =\frac{\frac{1}{3} \pi(5)^{2} \times 8}{\frac{4}{3} \pi(0 \cdot 5)^{3}}=\frac{25 \times 8}{4 \times 0.5 \times 0 \cdot 5 \times 0 \cdot 5} \\
& =\frac{25 \times 2 \times 10 \times 10 \times 10}{5 \times 5 \times 5}=400
\end{aligned}
$$

Ans.
(c) Given, ABCD is a parallelogram, with $\mathrm{A}(x, y)$, B $(5,8), C(4,7)$ and $D(2,-4)$
(i) As diagonals of a parallelogram bisect each other.
\therefore E is midpoint of BD as well as AC.
Coordinates of $\mathrm{E}=\left(\frac{x+4}{2}, \frac{y+7}{2}\right)$
(Using coordinates of A and C)
Coordinates of $\mathrm{E}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
=\left(\frac{5+2}{2}, \frac{8-4}{2}\right)
$$

(Using coordinates of B and D)

$$
=\left(\frac{7}{2}, 2\right)
$$

On comparing, $\frac{x+4}{2}=\frac{7}{2}$ and $\frac{y+7}{2}=2$

$$
\Rightarrow \quad x=3 \text { and } y=-3
$$

\therefore Coordinates of A are $(3,-3)$.
(ii) Equation of diagonal BD,

$$
\begin{array}{rlrl}
& y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \\
\Rightarrow & y-8=\frac{-4-8}{2-5}(x-5) \\
\Rightarrow & y-8=\frac{-12}{-3}(x-5) \\
\Rightarrow & y-8=4(x-5) \\
\Rightarrow & &
\end{array}
$$

Ans.

Solution 6.
(a) (i) and, (ii) see the given graph.
(iii) $\mathrm{A}^{\prime}(-4,4), \mathrm{B}^{\prime}(-4,-6), \mathrm{C}^{\prime}(-8,0)$

Ans. (iv) $\mathrm{AA}^{\prime} \mathrm{C}^{\prime} \mathrm{B}^{\prime} \mathrm{BC}$ is a hexagon.
Ans.
Ans.

Solution 7.
(a) Given, $\frac{\sqrt{3 x+4}+\sqrt{3 x-5}}{\sqrt{3 x+4}-\sqrt{3 x-5}}=\frac{9}{1}$

Using componendo and dividendo
$\frac{\sqrt{3 x+4}+\sqrt{3 x-5}+\sqrt{3 x+4}-\sqrt{3 x-5}}{\sqrt{3 x+4}+\sqrt{3 x-5}-\sqrt{3 x+4}+\sqrt{3 x-5}}$ $=\frac{9+1}{9-1}=\frac{10}{8}=\frac{5}{4}$

$$
\begin{aligned}
& \frac{2 \sqrt{3 x+4}}{2 \sqrt{3 x-5}}
\end{aligned}=\frac{5}{4}, ~=\frac{3 x+4}{3 x-5}=\frac{25}{16}
$$

(Squaring both sides)

$$
\begin{array}{rlrl}
& \Rightarrow & 48 x+64 & =75 x-125 \\
& \Rightarrow & 75 x-48 x & =125+64 \\
& 27 x & =189 \\
& \Rightarrow & x & =\frac{189}{27}=7
\end{array}
$$

(b) Given,

$$
A=\left[\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right], B=\left[\begin{array}{rr}
4 & -2 \\
-1 & 3
\end{array}\right]
$$

and

$$
\begin{aligned}
\mathrm{I} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\mathrm{A}^{t} & =\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]
\end{aligned}
$$

Ans.

$$
A^{t} \cdot B=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]\left[\begin{array}{rr}
4 & -2 \\
-1 & 3
\end{array}\right]
$$

$$
\mathrm{A}^{t} \cdot \mathrm{~B}=\left[\begin{array}{rr}
8-1 & -4+3 \\
20-3 & -10+9
\end{array}\right]
$$

$$
\begin{align*}
\mathrm{A}^{t} \cdot \mathrm{~B} & =\left[\begin{array}{rr}
7 & -1 \\
17 & -1
\end{array}\right] \tag{i}\\
\mathrm{BI} & =\left[\begin{array}{rr}
4 & -2 \\
-1 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\mathrm{BI} & =\left[\begin{array}{rr}
4 & -2 \\
-1 & 3
\end{array}\right] \tag{ii}
\end{align*}
$$

From equation (i) and (ii)

$$
\begin{aligned}
\mathrm{A}^{t} \cdot \mathrm{~B}+\mathrm{BI} & =\left[\begin{array}{rr}
7 & -1 \\
17 & -1
\end{array}\right]+\left[\begin{array}{rr}
4 & -2 \\
-1 & 3
\end{array}\right] \\
\mathrm{A}^{t} \cdot \mathrm{~B}+\mathrm{BI} & =\left[\begin{array}{rr}
7+4-1-2 \\
17-1 & -1+3
\end{array}\right] \\
& =\left[\begin{array}{cc}
11 & -3 \\
16 & 2
\end{array}\right]
\end{aligned}
$$

Ans.
(c) (i) Given, $\triangle \mathrm{ABC}$ right angled at $\mathrm{A}, \mathrm{AD} \perp \mathrm{BC}$, $B D=18 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$.

$$
\text { Let } \quad \angle \mathrm{ABD}=x
$$

So, $\quad \angle \mathrm{ACD}=\angle \mathrm{ACB}=90-x$

Also

$$
\angle \mathrm{BAD}=90-x
$$

$\left(\because \angle \mathrm{ADB}=90^{\circ}\right)$

Now, in $\triangle \mathrm{ADB}$ and $\triangle \mathrm{CDA}$

$$
\begin{aligned}
\angle \mathrm{ADB} & =\angle \mathrm{CDA} \\
& =90^{\circ} \text { each }
\end{aligned}
$$

(b)

Marks	f	c.f.
$0-10$	5	5
$10-20$	11	16
$20-30$	10	26
$30-40$	20	46
$40-50$	28	74
$50-60$	37	111
$60-70$	40	151
$70-80$	29	180
$80-90$	14	194
$90-100$	6	200

(i) From the graph:

$$
\begin{aligned}
\text { Median } & =\left(\frac{n}{2}\right)^{\text {th }} \text { observation } \\
& =\left(\frac{200}{2}\right)^{\text {th }} \text { observation } \\
& =100^{\text {th }} \text { observation } \\
& =57
\end{aligned}
$$

Ans.
On graph, draw a perpendicular from X -axis at 40 marks to the ogive. The point from where line touches ogive drop a perpendicular on the Y -axis. The point where it touches Y -axis is the answer.
(ii) No. of students who failed $=46$

Ans.
(iii) Number of students who secured grade one $=200-188=12$

Ans.
Solution 9.
(a) (i) Given, investment $=₹ 52,000$

Nominal value of one share $=₹ 100$
Market value of one share

$$
=₹ 100-20=₹ 80
$$

ICSE Mathematics-2011

$$
\begin{aligned}
\text { Number of shares } & =\frac{\text { Investment }}{\text { Market value }} \\
& =\frac{52,000}{80}=650
\end{aligned}
$$

Dividend on one share
= Rate of Dividend

$$
\times \text { Nominal value of one share }
$$

$$
=\frac{8}{100} \times 100=₹ 8
$$

\therefore Annual dividend $=$ No. of shares
\times Dividend on one share

$$
=650 \times ₹ 8=₹ 5,200 \quad \text { Ans. }
$$

(ii) Market value of 1 share

$$
=₹ 100+₹ 20=₹ 120
$$

Selling price of 650 shares

$$
\text { = ₹ } 120 \times 650 \text { = ₹ } 78,000
$$

Profit earned including his dividend

$$
\begin{aligned}
= & \text { Selling value } \\
& + \text { Dividend - Investment } \\
= & \text { ₹ } 78,000+\text { ₹ } 5,200 \\
= & -₹ 52,000 \\
= & 31,200 \quad \text { Ans. }
\end{aligned}
$$

(b) Steps of construction:

1. Taking O as centre and $O Q$ as radius equals 3.5 cm , draw a circle.
2. Mark a point P from O at a distance of 6 cm .
3. Draw perpendicular bisector of OP.
4. Draw a circle with O^{\prime} as a centre which cuts the another circle at points A and B .
5. Join PA and PB.

PA and PB are the required tangents

(c) To prove,
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A) \cdot \sec ^{2} A=\tan A$
L.H.S. $=(\operatorname{cosec} A-\sin A)(\sec A-\cos A) \cdot \sec ^{2} A$

$$
=\left(\frac{1}{\sin \mathrm{~A}}-\sin \mathrm{A}\right) \cdot\left(\frac{1}{\cos \mathrm{~A}}-\cos \mathrm{A}\right)
$$

$$
\cdot \frac{1}{\cos ^{2} \mathrm{~A}}
$$

$$
\begin{aligned}
& \quad\left[\sec \mathrm{A}=\frac{1}{\cos \mathrm{~A}^{\prime}}, \operatorname{cosec} \mathrm{A}=\frac{1}{\sin \mathrm{~A}}\right] \\
& =\left(\frac{1-\sin ^{2} \mathrm{~A}}{\sin \mathrm{~A}}\right) \times\left(\frac{1-\cos ^{2} \mathrm{~A}}{\cos \mathrm{~A}}\right) \times \frac{1}{\cos ^{2} \mathrm{~A}} \\
& =\frac{\cos ^{2} \mathrm{~A}}{\sin \mathrm{~A}} \times \frac{\sin ^{2} \mathrm{~A}}{\cos \mathrm{~A}} \times \frac{1}{\cos ^{2} \mathrm{~A}} \\
& =\frac{\sin \mathrm{A}}{\cos \mathrm{~A}}=\tan \mathrm{A} \\
& =\text { R.H.S. } \quad\left[\begin{array}{l}
1-\sin ^{2} \mathrm{~A}=\cos ^{2} \mathrm{~A} \\
1-\cos ^{2} \mathrm{~A}=\sin ^{2} \mathrm{~A}
\end{array}\right] \\
& \quad \text { Hence Proved. }
\end{aligned}
$$

Solution 10.
(a) Given, 6 is mean proportional between x and y.
$\Rightarrow x, 6, y$ are in continued proportion

$$
\begin{array}{lc}
\Rightarrow & \frac{x}{6}=\frac{6}{y} \\
\Rightarrow & x y=36 \\
\Rightarrow & x=\frac{36}{y} \tag{i}
\end{array}
$$

Also, 48 is third proportional of x and y (Given)
$\Rightarrow x, y, 48$ are in continued proportion.

$$
\begin{array}{ll}
\Rightarrow & \frac{x}{y}=\frac{y}{48} \\
\Rightarrow & y^{2}=48 x \tag{ii}
\end{array}
$$

From (i)

$$
y^{2}=48 \times \frac{36}{y}
$$

$$
\Rightarrow \quad y^{3}=48 \times 36
$$

Taking cube root on both sides

$$
\begin{array}{rlrl}
\Rightarrow & \sqrt[3]{y^{3}} & =\sqrt[3]{12 \times 12 \times 12} \\
\Rightarrow & & y & =12 \\
\text { And } & & x & =\frac{36}{y} \\
& & & =\frac{36}{12} \\
& & =3
\end{array}
$$

\therefore The numbers are 3 and 12 .
(c) Let, the height of the building be h In $\triangle B C D$,

$$
\begin{array}{ll}
& \\
& \frac{h}{x}=\tan 60^{\circ} \\
\Rightarrow & \frac{h}{x} \\
=\sqrt{3} \\
\Rightarrow & \\
h & =\sqrt{3} x
\end{array}
$$

In $\triangle \mathrm{ACD}$,

$$
\frac{h}{x+60}=\tan 30^{\circ}
$$

,

Now, from (i)

$$
\begin{aligned}
h & =\sqrt{3} x \\
h & =30 \times \sqrt{3} \\
& =30 \times 1.732
\end{aligned}
$$

Height $=51.96 \mathrm{~m}=52 \mathrm{~m}$
(rounded off)
The height of the building is 52 m .
Ans.
Solution 11.
(a) Given, $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{BC},=8 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$

Let the radii of three circles be r_{1}, r_{2} and r_{3} (shown in fig.)

Now,

$$
\begin{align*}
\mathrm{AB} & =r_{1}+r_{2}=10 \tag{i}\\
\mathrm{AC} & =r_{2}+r_{3}=6 \tag{ii}\\
\mathrm{BC} & =r_{3}+r_{1}=8 \tag{iii}
\end{align*}
$$

Adding equations (i), (ii) and (iii)

$$
\begin{align*}
2\left(r_{1}+r_{2}+r_{3}\right) & =10+6+8=24 \\
r_{1}+r_{2}+r_{3} & =12 \tag{iv}
\end{align*}
$$

Subtract (i) from (iv)

$$
\Rightarrow \quad r_{2}=12-10=2 \mathrm{~cm}
$$

Subtract (ii) from (iv)
$\Rightarrow \quad r_{1}=12-6=6 \mathrm{~cm}$
Subtract (iii) from (iv)
$\Rightarrow \quad r_{2}=12-8=4 \mathrm{~cm}$

Therefore, the radius of 3 circles are $2 \mathrm{~cm}, 6 \mathrm{~cm}$ and 4 cm .

Ans.
(b) Let, number of children be x

$$
\text { Share of each child }=₹ \frac{480}{x}
$$

Now, number of children $=x+20$

$$
\text { share of each child }=₹ \frac{480}{x+20}
$$

Now, According to the question

$$
\begin{aligned}
& \frac{480}{x}-\frac{480}{x+20}=12 \\
& \Rightarrow \quad \frac{480 x+9600-480 x}{x(x+20)}=12 \\
& \Rightarrow \quad 9600=12 x(x+20) \\
& \Rightarrow \quad 800=x^{2}+20 x \\
& \Rightarrow \quad x^{2}+20 x-800=0 \\
& \Rightarrow \quad x^{2}+40 x-20 x-800=0 \\
& \Rightarrow x(x+40)-20(x+40)=0 \\
& \Rightarrow \quad(x-20)(x+40)=0
\end{aligned}
$$

Either

$$
x=20
$$

or

$$
x=-40(\text { not possible })
$$

\therefore Number of children is 20 .
Ans.
(c) Equation of L_{1} is $y=4$ (given)
(i) As L_{2} is bisector of $\angle \mathrm{O}$ and $\angle \mathrm{O}=90^{\circ}$

$\Rightarrow L_{2}$ is inclined at an angle of 45° with XX^{\prime}
$\therefore \quad$ Slope of $\mathrm{L}_{2}=m=\tan 45^{\circ}=1 \quad$ Ans.
(ii) Slope of $\mathrm{L}_{2}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-0}{x-0}$

Where,

$$
\begin{array}{ll}
x_{1}=0, & y_{1}=0 \\
x_{2}=x, & y_{2}=y\left(\text { eq. of } L_{1} \text { is } y=4\right)
\end{array}
$$

Slope of $\mathrm{L}_{2}=1$
(using (i))

$$
\begin{array}{ll}
\Rightarrow & 1=\frac{4}{x} \\
\Rightarrow & x=4
\end{array}
$$

So, coordinates of P are $(4,4)$
Ans.
(iii) Equation of L_{2}

$$
y-4=1(x-4)
$$

$\binom{\mathrm{L}_{2}$ pass through $(4,4)}{$ and has slope $m=1}$

$$
y-4=x-4
$$

or

$$
x=y
$$

or

$$
x-y=0
$$

Ans.

[^0]: ** Answer is not given due to change in the present syllabus.

[^1]: ** Answer is not given due to change in the present syllabus.

[^2]: ** Answer is not given due to change in the present syllabus.

[^3]: [4]

[^4]: ** Answer is not given due to change in the present syllabus.

[^5]: ** Answer is not given due to change in the present syllabus.

